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ABSTRACT
Complete mitochondrial genome of the Peloponnese endemic lizard species Anguis cephallonica is pre-
sented in this study. The complete sequence is 17 208 bp long and consists of 13 protein-coding genes,
22 tRNA genes, two rRNA genes and one control region. The gene order is same as in the relative spe-
cies Anguis fragilis. Length of the 22 tRNA genes varies from 64 bp to 73 bp. The Anguis cephallonica
mitogenome base composition is: A (30.5%), T (24.2%), C (30.5%), G (14.8%), with an Aþ T bias (54.7%).
Six protein coding genes have incomplete stop codons. This is the first complete mitogenome described
in this species as well as in any endemic Peloponnese lizard. Presented complete mitochondrial genome
will form a basis for future comparative analysis within the genus Anguis.
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Legless lizards of the genus Anguis Linnaeus, 1758 (slow
worms) inhabit a large territory in the Western Palearctic
region. Out of five extant species, one is endemic of the
Italian Peninsula, two of the Balkans and two other occur in
large area of Europe and western Asia (Gvo�zd�ık et al. 2010,
2013). The last species, Peloponnese slow worm, A. cephallon-
ica, has the smallest range and is endemic to the
Peloponnese Peninsula, Zakynthos, Cephalonia and Ithaca
islands. Originally, A. cephallonica was described as a subspe-
cies of A. fragilis, however, precise studies based on morpho-
metric, allozyme and molecular markers resulted into its
recognition as a separate species with intraspecific genetic
variability (Grillitsch & Cabela 1990; Mayer et al. 1991; Gvo�zd�ık
et al. 2010, Thanou et al. 2014) and corroborated the
Peloponnese Peninsula as an important center of European
endemism (cf., Poulakakis et al. 2015).

Complete mitochondrial genomes represent a valuable
source of information and can be used to infer phylogenetic
relationships of various taxa with more precision and detail
than short sequences as has been previously successfully
demonstrated (Douglas et al. 2006; Douglas & Gower 2010;
Wielstra & Arntzen 2011). In order to provide a comprehensive
dataset for future phylogenetic studies we decided to
sequence complete mitochondrial DNA (mtDNA) of A. cepha-

llonica. We also compared basic genomic characteristics with
mitogenome of A. fragilis, the only other slow-worm species
sequenced so far (Albert et al. 2009).

Tissue sample (muscle from a road-killed individual;
voucher number of the Natural History Museum of Crete:
NHMC80.3.3.2.) for genetic analysis was collected near Oitylo
village (Peloponnese Peninsula, Greece, 36.72086�N;
22.39472�E) (Figure 1). Total genomic DNA was isolated with
Sherlock AX (A&A Biotechnology, Gdynia, Poland) according
to the product manual, then amplified in three overlapping
fragments and sequenced with primer walking method by
Wyzer Biosciences Inc. (Cambridge, USA) and assembled with
MITOS WebServer (Bernt et al. 2013).

The mitochondrial genome of A. cephallonica (17 208 bp;
GenBank KU052866) shares identical organization and gene
order with A. fragilis. Overall base composition of A. cephallon-
ica H-strand is as follows: A (30.5%), T (24.2%), C (30.5%), G
(14.8%) and slightly differs from A. fragilis: A (29.2%), T (26%),
C (28.2%), G (16.6%). Twenty-one out of 38 elements vary in
length between both genomes. Control region is shorter by
254 nucleotides in A. cephallonica. The most of the corre-
sponding start codons are the same for protein coding genes
(PCGs) excluding ND3 (ATG – A. cephallonica, GTG – A. fragilis).
Eleven PCGs have the same start codon – ATG, while COX1
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and A. fragilis ND3 require GTG. In A. cephallonica genome, six
of PCGs use truncated stop codons (ATP6, COX2, COX3, ND3,
ND4, ND5), three genes stop with TAA (ATP8, ND1, ND4L),
three with TAG (COX1, CYTB, ND2) and one with AGA (ND6).
When compared to A. fragilis genome, stop codons usage dif-
fers as the most common stop codons in A. fragilis is TAA
(ATP6, ATP8, COX1, ND2, ND4L, ND5), then truncated stop
codons (COX2, COX3, ND3, ND4) and TAG (CYTB, ND1) and
AGA (ND6).
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