Journal of Biogeography

Editors: Gareth Jenkins, Luciano Bosso, Alison Nazareno, Diogo Provete

Volume 51, Number 7, July 2024

WILEY

DOI: 10.1111/jbi.14823

RESEARCH ARTICLE

Revised: 14 February 2024

Some like it hot: Past and present phylogeography of a desert dwelling gecko across the Arabian Peninsula

Lukáš Pola¹ | Pierre-André Crochet² | Philippe Geniez³ | Mohammed Shobrak⁴ | Salem Busais⁵ | Daniel Jablonski⁶ | Rafaqat Masroor⁷ | Timur Abduraupov⁸ | Salvador Carranza⁹ | Jiří Šmíd^{1,10}

¹Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic

²CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France

³CEFE, EPHE-PSL University, Univ Montpellier, CNRS, IRD, Biogéographie et Ecologie des Vertébrés, Montpellier, France

⁴National Center for Wildlife, Prince Saud Al Faisal Research Centre, Taif, Saudi Arabia

⁵Department of Biology, Faculty of Education, Aden University, Yemen

⁶Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia

⁷Zoological Sciences Division, Pakistan Museum of Natural History, Islamabad, Pakistan

⁸Institute of Zoology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan

⁹Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain

¹⁰Department of Zoology, National Museum, Prague, Czech Republic

Correspondence

Lukáš Pola, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic. Email: polal@natur.cuni.cz

Funding information

Pakistan Science Foundation; National Natural Science Foundation of China; Charles University Research Centre; Ministry of Culture of the Czech Republic; Grantová Agentura České Republiky;

Abstract

Aim: Deserts represent dynamic ecosystems that support communities of endemic and specialised species. We analysed the role of present and past climatic conditions in shaping the distribution of the widespread *Bunopus* geckos in the Arabian and south-west Asian deserts. We studied their phylogeographic and demographic history to test whether the *Bunopus* geckos colonised Arabia from Asia or, vice versa, Asia from Arabia and to identify migration corridors that have historically enabled the dispersal of *Bunopus* geckos.

ournal of

Biogeography

Location: The Middle East, especially the Arabian Peninsula.

Taxon: Genus Bunopus (Squamata; Gekkonidae).

Methods: We generated sequence data for four genes and performed maximum likelihood, Bayesian inference and time-calibrated phylogenetic analyses and ancestral area reconstruction to infer the phylogenetic and biogeographic history of the genus. We modelled the species' distribution and projected it to several past time periods spanning from mid-Pliocene to the present. We analysed contemporary landscape connectivity across the peninsula to identify dispersal corridors that enable migration and promote gene flow among *Bunopus* populations in Arabia.

Results: *Bunopus* is formed by deeply divergent lineages that correspond to up to eight candidate species. The genus originated in southwest Asia and dispersed to Arabia in the late Miocene. The Arabian populations were stable through most of their history in terms of size and distribution extent. Major corridors for contemporary *Bunopus* dispersal stretch along the eastern Arabian coasts from where they cross through the peninsula to the northern Red Sea coasts.

Main Conclusions: The evolutionary history of *Bunopus* was substantially influenced by paleoenvironmental conditions. The generalist habits and ground-dwelling lifestyle enabled the geckos to colonise most of the arid regions of southwest Asia, with Arabia being colonised from the Iranian Plateau in the late Miocene. The distribution extent of *Bunopus* responded to the past climatic and habitat oscillations; the range

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Journal of Biogeography published by John Wiley & Sons Ltd.

Grantová Agentura, Univerzita Karlova; Charles University, Grant/Award Number: SVV260685/2023

was fragmented during moist climatic phases, and it expanded in times of increased aridity. The genus requires taxonomic revision to formally assess its diversity. Based on the results obtained in this study, *Crossobamon orientalis* is reassigned to *Bunopus*.

Journal of

KEYWORDS

biogeography, *Bunopus, Crossobamon*, Gekkonidae, Middle East, palearctic naked-toed geckos, paleodistribution, quaternary oscillations

1 | INTRODUCTION

Past climatic oscillations have played a crucial role in shaping the current distribution of biodiversity worldwide. In contrast to the temperate biomes that were characterised by recurrent warm-to-cold climate shifts during the Quaternary, subtropical deserts have experienced alternations of humid and arid conditions (Glennie, 2020; Hesse et al., 2004). Arid deserts have received considerably less attention from biodiversity researchers compared to other ecosystems (Durant et al., 2012), and our understanding of the effects of past climatic fluctuations on their biota remains rather incomplete (Douglas et al., 2006; Pepper & Keogh, 2021).

The Arabian Peninsula is an isolated subcontinent that was historically part of Africa, from which it drifted away to the northeast after their split in the mid-Oligocene to Early Miocene (Bosworth et al., 2005). The peninsula is rimmed by mountains that run along the seas which flank Arabia from the west, south and east. The Arabian interior is dominated by basalt flows and salty plains, but most notably by sand and gravel deserts with the Rub' Al Khali sand sea (also called the Empty Quarter) being the dominant feature (Edgell, 2006). The extent of these deserts was, however, not stable throughout the history of Arabia as it responded to fluctuating climatic conditions. The climate of Arabia is believed to have been humid with well-developed systems of seasonal river valleys (termed wadis) that drained the peninsula during the Late Pleistocene and Early Pliocene (Anton, 1984; Dabbagh et al., 2020). At that time, these deserts were covered by open savanna woodlands and the giant sand dunes in southern Arabia were interspaced with lakes and swamps (Edgell, 2006; McClure, 1976; Vincent, 2008). During the Quaternary, the climate of Arabia fluctuated regularly between hyper-arid (similar to those of today) and humid that was characterised by increased precipitation and the reactivation of river and lake systems in the interior (Breeze et al., 2015; Dinies et al., 2015). This generated a complex spatial and temporal mosaic of habitats that likely impacted the population dynamics of the desert dwelling biota and provided windows of opportunity for dispersal for animals and hominins (Parker, 2010; Stimpson et al., 2016).

The mountains of Arabia have been shown to support unique diversity of squamates with exceptional levels of endemism and as such have received considerable scientific attention (Carranza et al., 2016; Carranza & Arnold, 2012; Garcia-Porta et al., 2017; Metallinou et al., 2015; Šmíd et al., 2013, 2017). By contrast, the fauna of the inland deserts has been overlooked until relatively recently (Metallinou et al., 2012; Pola et al., 2021; Šmíd et al., 2021). The phylogeographic histories of widespread fauna may reveal how past climatic oscillations have affected the whole peninsular faunal assemblage.

Geckos of the genus Bunopus Blanford, 1874 are habitat generalists that inhabit a broad range of habitats throughout Arabia and the Iranian Plateau, ranging from southern Israel in the west to central Pakistan in the east (Sindaco & Jeremčenko, 2008; Šmíd et al., 2014, 2021). Their ground-dwelling habits in combination with their widespread distribution and high local population densities make them a suitable model for studying present and past dispersal dynamics in these hyper-arid environments. Two to three species of Bunopus are currently recognised, B. crassicauda, B. tuberculatus and presumably also B. blanfordii. While the first is endemic to Iran, the second occupies the rest of the genus' range including the entire Arabian Peninsula. The status of the third species, B. blanfordii, remains questionable, and the species is often considered a synonym of B. tuberculatus (see Bauer et al., 2013). The apparent uniformity of B. tuberculatus across its range was first doubted by Červenka et al. (2008) and later on by Khosravani et al. (2017), who found cryptic diversity within the species indicating that it likely represents a species complex. Nonetheless, the status of the populations occurring in the Arabian Peninsula has not been thoroughly investigated.

In this study, we analyse the role of present and past climatic conditions in shaping the distribution of a widespread generalist species in the Arabian deserts. We analyse sequence data of two mitochondrial and two nuclear markers to untangle the phylogenetic and phylogeographic history of the *Bunopus* species and populations across the entire distribution of the genus range. We use the genetic data and a dense sampling from throughout the Arabian Peninsula to infer the demographic history of the Arabian populations since the Pliocene to the present. Finally, we apply species distribution modelling to identify the extent of suitable habitats for *Bunopus* in Arabia in the present and in the past. The integration of the genetic and spatial results allows us to analyse the connectivity of landscapes across the peninsula and its role in the migration of this broad-ranging genus. This ultimately leads to the identification of dispersal corridors that enable migration and promote gene flow among *Bunopus* populations in Arabia.

2 | MATERIALS AND METHODS

2.1 | Taxon sampling and outgroup selection

Tissue samples included in this study originated from targeted field trips of the authors and colleagues. They were supplemented by samples obtained from museum voucher specimens from the following collections: Zoological Research Museum Alexander Koenig, Bonn, Germany (ZFMK); Museum of Vertebrate Zoology, Berkeley,

1245

-WILEY-

WILEY^{_} Journal of Biogeography

USA (MVZ); CEFE – EPHE/CNRS collection of the Biogeography and Ecology of the Vertebrates team, Montpellier, France (BEV); California Academy of Sciences, San Francisco, USA (CAS); Steinhardt Museum of Natural History at Tel Aviv University, Israel (TAU.R); National Museum Prague, Czech Republic (NMP); Institute of Evolutionary Biology, Barcelona, Spain (IBE); Daniel Jablonski's field collection housed at Comenius University, Bratislava, Slovakia (DJ). We assembled a total of 88 samples covering densely the Arabian part of the genus range. We retrieved sequences for 93 additional samples from the GenBank and BOLD (www.boldsystems. com) databases. The final dataset included 174 ingroup samples from across the entire range of the genus (Figure 1). We adopted the code system proposed by Khosravani et al. (2017) for the undescribed candidate species (*Bunopus* sp. 1–5).

As for the outgroup taxa, there are disputes with regards to what gecko genus is the closest relative to *Bunopus*. Numerous molecular phylogenetic studies showed a sister relationship between *Crossobamon* and *Bunopus* (Bauer et al., 2013; de Pous et al., 2016; Gamble et al., 2012; Machado et al., 2019, 2021; Metallinou et al., 2012). However, other studies recovered *Crossobamon* to be nested within *Bunopus* (Agarwal et al., 2014; Pyron et al., 2013; Zheng & Wiens, 2016), making the latter paraphyletic. The phylogenetic position of the two genera with respect to each other remains disputed and using only *Crossobamon* as the outgroup for the phylogenetic analyses might affect the results. We therefore used samples of both known *Crossobamon* species, *C. eversmanni* and *C. orientalis*, that cover broadly their ranges, but we also included more distant taxa *Agamura persica* and *Trachydactylus spatalurus* to root the tree.

2.2 | DNA extraction, amplification and sequence analysis

Genomic DNA was extracted from ethanol-preserved tissue samples using Tissue Genomic DNA Mini Kit (Geneaid) following the manufacturer's instructions. We PCR-amplified up to four genetic markers: two mitochondrial (mtDNA): the 12S rRNA (12S) and the cytochrome c oxidase subunit 1 (COI), and two nuclear (nDNA): the recombination activating gene 2 (RAG2) and the oocyte maturation factor MOS (c-mos). The PCR products were purified using EXOSAP-IT® PCR Product Cleanup Reagent (Thermo Fisher Scientific) and were Sanger-sequenced in both directions in Macrogen Europe (Amsterdam, the Netherlands). Primers, their sequences and PCR conditions are provided in Table S1.

Raw sequence data were inspected and contigs assembled using Geneious R11 (Kearse et al., 2012). Heterozygous positions in the nuclear markers were identified by the Heterozygote Plugin and were coded according to the IUPAC ambiguity codes. Sequences of each genetic marker were aligned independently by MAFFT (Katoh et al., 2019) using the default auto strategy for all genes except the 12S, where the Q-INS-i strategy that considers the secondary structure of RNA was applied. For the 12S alignment, we used Gblocks (Castresana, 2000) to trim poorly aligned regions with gaps. Sequences of protein-coding genes were translated into amino acids and no stop codons were detected. Samples used in this study are listed in Table S2.

The final concatenated alignment of the four markers was 1842 base pairs (bp) long – 378 bp of 12S (after Gblocks trimming), 663 bp of COI, 408 bp of RAG2 and 393 bp of c-mos.

FIGURE 1 (a) Maximum likelihood phylogenetic tree reconstructed from the concatenated dataset of 12S, COI, RAG2 and c-mos genes (1842 bp). The tree was rooted using *Trachydactylus spatalurus* and *Agamura persica* (not shown in the figure). Support values (SH-aLRT/ UFBoot/pp) are indicated by the circles at nodes with colours explained in the legend under the tree. Colours of tree branches match those of the sampled sites in (b). (b) Map showing the geographical sampling across the Middle East. Complete trees with original ML and BI support values are provided as Figures S1, S2, respectively. Taxon names correspond to changes proposed in this study. Specimen depicted is an individual photographed in south Jordan (Photo: Lukáš Pola).

2.3 | Phylogenetic and nuclear network analyses

We performed maximum likelihood (ML) and Bayesian inference (BI) analyses using the concatenated dataset of the four markers. The ML was carried out in IQ-TREE (Nguyen et al., 2015) using its online web interface W-IQ-TREE (Trifinopoulos et al., 2016). The dataset was partitioned by gene with models selected automatically by ModelFinder (Kalyaanamoorthy et al., 2017) as implemented in IQ-TREE. Branch support was assessed by the Shimodaira–Hasegawalike approximate likelihood ratio test (SH-aLRT; Guindon et al., 2010) and the Ultrafast bootstrap approximation algorithm (UFBoot; Minh et al., 2013), both with 1000 replicates.

The BI was performed using BEAST v.2.5.2 (Bouckaert et al., 2019). The dataset was again partitioned by gene, site and clock models were unlinked across partitions. We applied the reversible-jump based method for best model selection with four gamma-distributed rate categories (Bouckaert et al., 2013). The relaxed lognormal clock model was applied to each partition. We used the coalescent constant population tree prior with a 1/X population size prior. Lognormal prior distributions were selected for the clock parameter priors (ucldMean), with the mean=0.1 and standard deviation = 1.25. Rate variation across lineages (ucldStdev) of each partition was estimated using an exponential prior distribution (mean = 0.5). The analysis ran three times for 5×10^7 generations through the CIPRES Science Gateway (Miller et al., 2010) with trees and parameters sampled every 2×10^4 generations. Tracer v.1.7.1 (Rambaut et al., 2018) was used to check the effective sample size of all parameters and to ensure that stationarity and convergence had been reached. Tree files were then combined using LogCombiner after discarding 10% of the posterior trees as burn-in. The maximum clade credibility tree was identified using TreeAnnotator. Nodes that received SH-aLRT ≥80, UFBoot ≥95 in the ML analysis, and Bayesian posterior probability $(pp) \ge 0.95$ were considered strongly supported.

Inter- and intraspecific relationships were inspected by reconstructing haplotype networks of the nuclear loci. To resolve the heterozygous single nucleotide polymorphisms, the alignments of RAG2 and c-mos were phased using the PHASE algorithm (Stephens et al., 2001) as implemented in DnaSP v.6 (Rozas et al., 2017) with probability threshold set to 0.7. Prior to phasing, we excluded several shorter sequences and the outgroups to avoid misleading results. Haplotype networks were constructed from the phased alignments using the TCS algorithm (Clement et al., 2000; Templeton et al., 1992) implemented in PopART (Leigh & Bryant, 2015).

2.4 | Estimation of divergence times

We calibrated the phylogeny with the substitution rate of the 12S gene estimated by Carranza and Arnold (2012), with the mean clock rate of 0.00755 and standard deviation of 0.00247. Similar approach has proven useful when calibrating trees of other gekkonid taxa in

the region (Carranza & Arnold, 2012; de Pous et al., 2016; Machado et al., 2021). The analysis was run in BEAST through CIPRES with parameters and priors as described above. The only difference was that we applied the Yule tree prior that assumes a constant lineage birth rate with sampling limited to one sample per lineage. The described and candidate species of *Bunopus* and all the outgroup species were thus represented by one sample each. Only the Arabian candidate species, *Bunopus* sp. 4, was represented by four samples to be able to estimate divergence times between the major geographic lineages as recovered by the ML and BI analyses (see Results below). The analysis ran three times for 3×10^7 generations and was sampled every 3000 generations.

2.5 | Ancestral area reconstruction

To infer the biogeographical history and ancestral ranges of Bunopus, we used the R package 'BioGeoBEARS' (Matzke, 2013). We used the calibrated tree as input and pruned the outgroup species prior to the analysis. We also retained only one tip for the Bunopus sp. 4 candidate species. We defined three biogeographic areas based on the geological history of the region (Popov et al., 2004): (i) Arabia, for the Arabian Peninsula including the desert in southern Jordan; (ii) Mesopotamia, for the lowlands along the Euphrates and Tigris Rivers; (iii) mainland Asia east of the Zagros Mountains in Iran. We assigned each tip to one or more of these areas based on the current distribution of that lineage. We restricted the maximum number of areas in which ancestral nodes could occur to two and performed ancestral reconstructions using the three models available in BioGeoBEARS: Dispersal-Extinction-Cladogenesis (DEC; Ree & Smith, 2008), DIVALIKE (Ronguist, 1997) and BAYAREA (Landis et al., 2013). We examined the plausibility of the results of each model empirically and we also assessed the fit of the models by the Akaike information criterion corrected for sample size (AICc; Akaike, 1973). The + J parameter that is implemented in BioGeoBEARS and allows including founder-event speciation (jump-dispersal; Matzke, 2014; Ree & Sanmartín, 2018) was not included in the models.

2.6 | Inferring the demographic history

To estimate population size changes through time, we used Extended Bayesian Skyline Plots (EBSP) using BEAST v.2.5.2 (Heled & Drummond, 2008). Since the focus of the study lies on the Arabian populations of *Bunopus*, we pruned the dataset for this analysis to only include samples of the candidate species from Arabia, *Bunopus* sp. 4, of which there were 83. The BEAST settings followed those described above for the BI analysis. The average number of population changes was modelled with a Poisson prior distribution. The analysis ran three times for 2×10^8 generations, and 10% of the posterior parameter values were discarded as burn-in.

1247

WILEY

Journal of Biogeography

2.7 | Modelling potential distribution in the present and in the past

/ILEY- Journal of Biogeogra

We compiled a database of available distribution records by searching published literature, museum catalogues, public databases (e.g., GBIF) and gathering field observations. In total, we assembled 1314 records of Bunopus representing 920 unique localities. We thinned the dataset using the 'spThin R' package (Aiello-Lammens et al., 2015) to reduce possible model bias resulting from high concentrations of distribution records from thoroughly explored areas (e.g., the UAE, Oman; Carranza et al., 2018, 2021; Burriel-Carranza et al., 2019). We used a radius of a minimum of 50 km to separate any two records and run the thinning ten times, which produced ten different and randomly sampled datasets of 161 records. Since we focus in this study on the Arabian populations of Bunopus, we only used records of the clade containing Bunopus tuberculatus sensu stricto and the candidate species Bunopus sp. 3 and sp. 4. We pooled records of these three lineages together for the modelling purposes. The reasoning was that although they show a certain degree of genetic differentiation, it is mostly in the mitochondrial DNA and only in a limited way in the nuclear DNA, and with our current knowledge, it cannot be ruled out that the three lineages represent a single species. The species and candidate species from the Iranian Plateau were not included in the modelling since their environmental niches may differ from those of the Arabian clade and because they were not the primary aim of this study.

Nineteen bioclimatic variables were downloaded from CHELSA (Karger et al., 2017) at the resolution of 2.5 arc-minutes and cropped to the study area. BIO8. BIO9 and BIO18 were excluded because they showed spatial artefacts and BIO14 because it showed no variation across the study area. In addition to the bioclimatic layers, we used layers for elevation and slope. To be able to project habitat suitability in the past when sea level was different from today, we created a layer of elevation that also contained negative values for areas below the sea level (bathymetry data downloaded from GEBCO; https://www.gebco.net). We tested for collinearity between the layers using ENMTools (Warren et al., 2010) and of those with correlation over 0.75 we retained only the more biologically meaningful ones (Elith & Leathwick, 2009). The final set contained these variables: elevation, slope, mean diurnal air temperature range (BIO2), temperature seasonality (BIO4), mean daily mean air temperatures of the coldest quarter (BIO11), precipitation seasonality (BIO15), mean monthly precipitation amount of the wettest quarter (BIO16), and mean monthly precipitation amount of the driest guarter (BIO17).

We used Maxent 3.3 (Phillips et al., 2006) to develop the species distribution model and to assess the importance of each variable. Ten model replicates with the cross-validate resampling method were run for each of the ten input datasets, using 10,000 background sample points and with 5000 maximum iterations. The area under the curve (AUC) was assumed as a measure of individual model fit. The final model of potential distribution was averaged over the ten

replicates. To test whether the models performed better than random, we generated 100 null models, each for a set of 161 records randomly generated within the study area and with settings similar to the models based on real data.

To assess the dynamics and stability of the Bunopus distribution in Arabia, we projected the model to past periods, ranging from the late Holocene to mid-Pliocene. We downloaded bioclimatic layers for the following past periods: late Holocene (4.2-0.3 thousand years ago [ka]); Pleistocene/early Holocene (12.9-11.7 ka); late Pleistocene (14.7-12.9 ka); Pleistocene - Last Glacial Maximum (LGM; ca. 21 ka); Pleistocene - Last Interglacial (LIG; ca. 130ka); mid-Pleistocene (ca. 787ka); and mid-Pliocene (ca. 3.3 Ma). Spatial data were obtained from www.Paleoclim. org (Brown et al., 2018), with the original sources being Dolan et al. (2015), Fordham et al. (2017) and Otto-Bliesner et al. (2006). The elevation and slope layers were also included in the paleo projections. The elevation was manually adjusted for each of the past time periods to reflect the sea level difference at that time compared to the present. For projections to the mid-Pleistocene and mid-Pliocene, mean diurnal air temperature range was excluded as it was not available for those time periods. The paleo projections were run ten times each with the final model averaged over the ten runs. Input layer and parameter details of the distribution modelling are reported in an ODMAP protocol file (Zurell et al., 2020) in the Supplementary Material.

2.8 | Identifying contemporary dispersal corridors

We analysed contemporary spatial connectivity of the Bunopus populations across the Arabian Peninsula, Mesopotamia and coastal Iran by visualising least-cost corridors (LCC; Chan et al., 2011) among the genetically sampled localities using SDMtoolbox (Brown, 2014) in ArcGIS 10.3 (ESRI, 2011). The contemporary distribution model was inverted to create the friction layer for the calculation. We assigned sampled sites to genetic groups based on the results of the phylogenetic analyses (see below). We tested three different assignment schemes as follows: (i) all sites of the three lineages - B. tuberculatus, Bunopus sp. 3, and Bunopus sp. 4 - were pooled together; (ii) samples were assigned to the three lineages, which were treated as distinct evolutionary entities; and (iii) the three lineages were treated as separate groups, and samples of Bunopus sp. 4 were further divided to five groups based on the intraspecific structure of the phylogeny. The percentage of least-cost path value was used to select the LCC with the high, mid and low cut-off values being respectively 5, 2 and 1.

2.9 | Spatial analysis of population structure

We assessed the genetic structure of the Arabian populations of *Bunopus* and identified spatial genetic neighbourhoods using the 'MEMGENE' R package (Galpern et al., 2014). MEMGENE regresses

Moran's Eigenvector Maps (MEM), it is variables describing patterns of positive and negative spatial autocorrelation, against genetic distances to detect genetic structure and visualises spatial components of genetic dissimilarity among individuals (Galpern et al., 2014). Based on the results of the phylogenetic analyses (see below) we included in this analysis only samples and localities of the candidate species *Bunopus* sp. 4. We calculated pairwise genetic distances between all samples on the ML tree using the Geneious software. Forward selection of positive and negative MEM eigenvectors against genetic distance added eigenvectors to a regression model until they ceased to improve model fit. Principal component scores of the predicted values are defined as Memgene variables and we used those with the highest R^2 values to produce maps of the spatial patterns of genetic relationships.

We also visualised the correlation between the geographic and genetic distances. We used functions from the 'MASS' (Venables & Ripley, 2002) and 'adegenet' (Jombart & Ahmed, 2011) packages to create a kernel density plot of *Bunopus* records in Arabia to highlight regions of increased point density in the plot. We calculated linear geographical distances between sampled sites using the 'raster' *R* package (Hijmans et al., 2014) and correlated them with the genetic distances, we also calculated least-cost path distances between all pairs of points using the corridor layer identified in section 2.8 as a cost layer and correlated this distance matrix with the genetic distances. We are aware that the correlation between genetic and geographic distances does not account for spatial autocorrelation, we however find it useful for visualising the relationships between the variables.

3 | RESULTS

For this study, we generated 351 new sequences for 110 samples of the total of 202 samples used in the analyses. Sampling completeness (i.e., all four gene sequences available per sample) was 79.8% for the samples newly sequenced in this study and 55.6% with the GenBank and BOLD sequences included.

3.1 | Phylogenetic analyses

Both ML and BI analyses resulted in almost identical topologies in most nodes. According to the results (Figure 1; Figures S1, S2), a strongly supported clade that contained all *Bunopus* species and *Crossobamon orientalis* was recovered in all analyses (SH-aLRT = 98.9/ UFBoot = 100/pp = 1.00, support values are given in this order hereafter). It was formed by two strongly supported sister clades: Iranian (96.4/100/1.00) and Arabian (100/100/1.00). The Iranian clade consists of species occurring on the Iranian plateau and further East and North: *Bunopus crassicauda*, the candidate species *Bunopus* sp. 1, *Bunopus* sp. 2 and *Bunopus* sp. 5, and also *Crossobamon orientalis* from Pakistan and India. The relationships within this clade Journal of Biogeography

were only partially resolved. *Bunopus crassicauda* was inferred to be sister to the remaining species, but the topology was only partially supported (78.3/92/1.00). The Arabian clade is formed by *Bunopus tuberculatus* sensu stricto from southern Iran, and the candidate species *Bunopus* sp. 3 from Mesopotamia and *Bunopus* sp. 4 from the Arabian Peninsula, with *B. tuberculatus* sensu stricto being strongly supported as sister to the remaining two (88.3/96/1.00). The phylogenetic position of *C. eversmanni* differed between the resulting trees. In the ML tree, it was supported as sister to the whole *Bunopus* clade (98.9/100), in the BI tree it was sister to *Agamura persica*, although with low support.

In light of the paraphyly of the genus *Crossobamon* recovered in both ML and BI analyses, we run additional analysis to test whether the genus is significantly non-monophyletic. We constrained the topology of the tree and forced the two *Crossobamon* species to form a clade. We used the approximately unbiased (AU), the Shimodaira-Hasegawa (SH) and the Kishino-Hasegawa (KH) tests to compare this enforced topology with the unconstrained tree. Persite log likelihoods were calculated in raxmlGUI v.1.5 (Silvestro & Michalak, 2012) and *p*-values were calculated using CONSEL v.0.1 (Shimodaira & Hasegawa, 2001). The results indicate that the monophyly of *Crossobamon* can be significantly rejected (AU: 0.001; SH: 0.002; KH: 0.002).

The haplotype networks (Figure 2) show a certain degree of allele sharing between the *Bunopus* species, including *Crossobamon orientalis*, in both nuclear markers. The only species that have all alleles private (i.e., not shared with other species) are *Crossobamon eversmanni*, *Bunopus crassicauda* and *Bunopus* sp. 1. All the other species share alleles of one or both nuclear markers with some other species. Within the Arabian clade, *B. tuberculatus* sensu stricto possesses unique haplotypes in RAG2, and all the three species of that clade share one common allele in c-mos.

3.2 | Estimation of divergence times

The initial split within the genus that separated the Iranian (including *C. orientalis*), and the Arabian clades was estimated to take place 14.0 million years ago (Ma) (highest posterior density interval [HPD]: 10.8–17.6 Ma; Figure 3). The crown diversification within the Iranian clade was estimated to have occurred 10.3 Ma (HPD: 7.8–13.1) and within the Arabian clade 5.8 Ma (HPD: 4.2–7.8). The split between the candidate species *Bunopus* sp. 3 and sp. 4 was estimated to 3.4 Ma (HPD: 2.4–4.6).

3.3 | Ancestral area reconstruction

The results of the biogeographic reconstruction were largely congruent between the tested biogeographic models. DIVALIKE was the most plausible of the models (Table S3) and we therefore present only the results based on this model (Figure 3). The origin of the Iranian clade was unequivocally inferred to be Asian (marginal

FIGURE 2 Haplotype networks of the RAG2 and c-mos nuclear markers. Circle size is proportional to the number of samples that share that allele. Transverse bars on the connecting lines indicate the number of mutational steps between alleles. Colours correspond to those in Figure 1. Taxon names correspond to changes proposed in this study.

probability 100% in DEC and DIVALIKE, 92.6% in BAYAREA). The Arabian clade was inferred to have originated either in Asia or in Mesopotamia (89.7% in DEC, 98% in DIVALIKE, 61.7% in BAYAREA). The biogeographic origin of the crown *Bunopus* clade (including *C. orientalis*) was not resolved with certainty; the DEC model supported an unresolved Asian or Mesopotamian origin (60.3%) while DIVALIKE and BAYAREA only Asian origin (66.7% and 57.7%, respectively).

3.4 | Inferring the demographic history

The reconstruction of the demographic history of the Arabian populations shows a stable population trend since the split between *Bunopus* sp. 3 and sp. 4 at 3.4 Ma until about 200ka (Figure 3). At that time the population size started decreasing considerably, which continued until after the LIG (ca. 130ka). At about 80ka, the trend turned, and the population increased almost to the predrop level.

3.5 | Present and past potential distribution

Mean AUC for the present ranged between 0.744 and 0.768, with the mean being 0.759. The consistency of the AUC values across the models along with extremely low standard deviation values of all runs (0.055-0.06; mean=0.057) implies model stability regardless of the input data. The models performed significantly better than the null models (AUC: 0.586–0.688; mean=0.637). The AUC values of the models would be categorised as 'fair' according to standard criteria for distribution model evaluation (Araújo et al., 2005). It should however be noted that it has been shown that predictive models of generalist species with broad environmental niches, such as *Bunopus*, achieve lower AUC values compared to habitat specialists (Connor et al., 2018). The most important environmental predictors were the elevation (contribution 48.6%–54.6%; mean=50.8%), precipitation seasonality (contribution 7.2%–10.0%; mean=8.5%) and mean diurnal air temperature range (contribution 6.3%–9.8%; mean=8.0%).

The predictive model based on the present environmental conditions showed that large parts of eastern Arabia, coastal western Arabia and coastal Iran support habitat that is suitable for *Bunopus* (Figure 4). The suitable habitat covers most of Oman and the UAE except the Hajar and Dhofar Mountains and regions adjoining the Rub' al Khali Desert. It extends along the Arabian Gulf through Qatar and Kuwait to southwestern Iran and then further along the Gulf to south-eastern coastal Iran. There is a narrow band of suitable habitat along the Red Sea coast in northwestern Arabia. It connects to the eastern part of the suitable habitat through a longitudinal belt that crosses central Arabia. Interestingly, most of southern Arabia (Yemen and southwestern Saudi Arabia including the Rub' Al Khali Desert) and northern Arabia (the An-Nafud Desert) were not found to be suitable for *Bunopus*.

Projections to past climatic conditions showed that eastern Arabia and most of the Arabian Gulf coast have harboured suitable habitat

FIGURE 3 (a) Time-calibrated tree and ancestral area reconstruction of Bunopus. All nodes were supported with posterior probabilities higher than ≥0.95. Mean age estimates for the branching events are provided below each node with the 95% HPD interval in brackets and also indicated with the blue horizontal bars. The biogeographic areas defined for the analyses are in the inset map. Pie charts at the nodes show the probability of each ancestral area. (b) Extended Bayesian Skyline Plot showing the temporal dynamics of the effective population size of the Arabian populations (Bunopus sp. 4) since its split from its sister lineage, Bunopus sp. 3. Taxon names correspond to changes proposed in this study.

throughout the past (Figure 4). The extent of suitable habitat was very similar in mid-Pliocene (3.3 Ma) and mid-Pleistocene (ca. 787 ka). It retreated during the LIG (ca. 130ka) and covered only central Oman and southern coasts of the Arabian Gulf. This habitat reduction was followed by a subsequent north-westerly expansion along and into the desiccated Arabian Gulf during the LGM (ca. 21 ka). During the LGM (ca. 21ka), the western Arabian coast was also suitable, but its extent has since been retreating. In the late Pleistocene (14.7-12.9 ka) and early Holocene (12.9-11.7ka), the range expanded and covered most of eastern Arabia, including the inland deserts which, however, became unsuitable again in the late Holocene (4.2-0.3 ka).

3.6 **Dispersal corridors**

The dispersal corridors inferred for the three schemes showed congruent spatial patterns (Figure S3). Most of lowland Oman and the coastal UAE are suitable for the dispersal of Bunopus,

and the main migration corridor stretches from there along the Arabian Gulf coast through Qatar and Saudi Arabia to Kuwait, from where it continues across central Arabia in a broad, longitudinal belt all the way to the Red Sea coast. The northern part of the Saudi Red Sea coast from around the city of Jeddah to the border with Jordan also promotes Bunopus population connectivity. The isolated populations in Yemen and southern Saudi Arabia are connected by dispersal routes to the southern Oman and Arabian Gulf populations, some of which run across the Rub' Al Khali sands (Figure 5).

Spatial analysis of population structure 3.7

The proportion of overall genetic variance explained by spatial patterns was high (adjusted $R^2=0.586$). The first three MEMGENE variables explained nearly 90% of the total variance (MEMGENE1=0.549; MEMGENE2=0.210; MEMGENE3=0.139).

FIGURE 4 Contemporary habitat suitability model of *Bunopus* in the Arabian Peninsula (upper left panel; based on pooled records of *B. tuberculatus* sensu stricto, *Bunopus* sp. 3 and *Bunopus* sp. 4), and habitat suitability models projected to different past time periods as indicated on top of each panel. Warmer colours denote higher probability of presence. Note that the Arabian Gulf dried out during the Quaternary sea-level low stands and the seabed provided a suitable habitat for *Bunopus*.

FIGURE 5 Contemporary dispersal corridors for the *Bunopus* geckos across the Arabian Peninsula. Large and coloured dots show sampled localities with colours corresponding to different lineages within *Bunopus* and matching the colours used in Figures 1, 2. Only the Arabian clade that consists of *B. tuberculatus* sensu stricto, *Bunopus* sp. 3 and sp. 4 was included in this analysis. Black dots indicate distribution records that were used for developing the potential distribution model. The population connectivity visualises landscape corridors that enable dispersal and promote gene flow between *Bunopus* populations. Specimen depicted in an individual from south Israel (Photo: Doubravka Velenská).

The first axis (MEMGENE1) showed a significant genetic structure that separates the northwestern Arabian *Bunopus* populations from the rest of the peninsula (Figure 6). Curiously, a sample from Qatar showed genetic affinity to the northwestern populations. The second axis (MEMGENE2) supported the division of eastern Arabian populations from the rest.

The plot of the relationship of the genetic and geographic distances showed a non-linear pattern of several structured

populations, some of which were close both geographically and genetically (Figure 6). Interestingly, the plot of the correlation between the genetic and geographic distances did not change regardless of whether we used the Euclidean distances or distances calculated as least-cost paths through the dispersal corridors. We therefore show only the latter plot. Most between-sample comparisons were separated by a geographic distance between 1000 and 2000km and a genetic distance of about 0.05 estimated substitutions per site, which is consistent with the results of the phylogenetic analyses that indicated the presence of several clades within *Bunopus* sp. 4.

4 | DISCUSSION

4.1 | Diversification within Bunopus

According to our estimates of the evolutionary history of Bunopus, the crown diversification took place in the mid-Miocene, about 14 Ma (confidence interval: 10.8-17.6 Ma) and resulted in the split between the Iranian and Arabian clades. The Iranian clade subsequently and gradually diversified into up to five lineages that may correspond to five distinct species (Khosravani et al., 2017). The Arabian clade radiated considerably later at 5.8 Ma (4.2-7.8 Ma) and gave rise to the lineages occurring around the Arabian Gulf and in the Arabian Peninsula. This clade contains B. tuberculatus sensu stricto from southern Iran and two candidate species, a Mesopotamian one that is referred to as Bunopus sp. 3, and one that is widespread in Arabia (Bunopus sp. 4). Our results that are based on a broad geographic and genetic sampling support the findings of Khosravani et al. (2017), who found that Iran supports several genetically distinct lineages within Bunopus presumably representing cryptic species. Our results show that the differentiation of the Iranian clade is older and deeper than that in the Arabian clade, and that it is quite

FIGURE 6 (a) Results of the spatial analysis of population structure conducted in MEMGENE. A total of 82 genotyped localities were used for the analysis. Circles of similar size and colour indicate individuals with similar scores along the first (left) and second (right) MEMGENE axes (large black and large white circles describe opposite extremes). The heatmap in the background shows the dispersal corridors for *Bunopus* across Arabia. (b) Plot of genetic distances against distances calculated as least-cost paths connecting all pairs of sampled localities among the Arabian populations of the *Bunopus* geckos. Warmer colours indicate higher densities of points. Note the large cluster of points at the genetic distance of about 0.05, which indicates the presence of several shallow phylogenetic lineages within the species.

likely that at least some of the candidate species will warrant formal taxonomic recognition.

The three lineages of the Arabian clade show clear differentiation at the mitochondrial level but a certain overlap in the nuclear markers (Figures 1, 2). It may be a result of their relatively recent split that simply did not provide enough time for the slowly evolving nuclear genes to differentiate. Alternatively, it could be caused by events of introgression. This remains to be tested with a broader sampling of genomic loci (e.g., SNPs; work in progress). The broad distribution of Bunopus in Arabia provides suitable grounds for comparison with other widespread Arabian genera. Most previous studies of other pan-Arabian squamates have uncovered cryptic diversity present across the peninsula and concluded that the diversity of species is in fact much higher than had been previously thought. These findings often resulted in descriptions of new microendemic species, with geckos being the most taxonomically dynamic group of reptiles in this respect (e.g., Carranza et al., 2016; Machado et al., 2019; Simó-Riudalbas et al., 2017, 2018; Šmíd et al., 2013, 2015, 2017, 2023; Tamar et al., 2019; Vasconcelos & Carranza, 2014). Bunopus, however, shows a completely different pattern. The results of our phylogenetic analyses imply that, despite the broad distribution

-Wiley-

of *Bunopus* sp. 4 lineage, it harbours only low genetic diversity in Arabia.

4.2 | Biogeographic and demographic history

The biogeographic reconstructions together with the timecalibrated analysis indicate that *Bunopus* originated in mainland Asia in the mid-Miocene (Figure 3). All species of the Iranian clade are confined to the Iranian Plateau and adjoining parts of mainland Asia and do not seem to ever have expanded anywhere else. On the other hand, the Arabian clade was estimated to have dispersed from the Iranian Plateau to the Arabian Peninsula during the Pliocene/ Pleistocene. At that time, the two landmasses were connected by a continental land bridge (Popov et al., 2004), which likely facilitated biotic interchange between Arabia and mainland Asia (Badiane et al., 2014; Simó-Riudalbas et al., 2019; Tamar et al., 2018; Tamar et al., 2021).

The colonisation of the Arabian Peninsula was a very successful one indeed. The historical range reconstruction shows that Bunopus managed to disperse from Mesopotamia in the north throughout the Arabian Peninsula to its eastern- and southernmost margins (Figure 3). The facts that the distribution of Bunopus spans across the entire Arabia and that its genetic structure throughout the peninsula is rather shallow point to the present distribution of Bunopus sp. 4 being a result of rapid dispersal with ongoing gene flow. This is further supported by the spatial patterns of genetic data that shows genetic homogeneity across most of the Arabian Peninsula (Figure 6). Interestingly, the process of range expansion does not seem to have been associated with expanding population size which was inferred here to have been stable since its split from the Mesopotamian lineage until about 250ka when it dropped substantially (Figure 3). After the decline, the population however returned rapidly to its original size. This drop may also be discernible in the projections of the predictive distribution model to past climatic conditions that indicate range contraction at the time of the Last Interglacial (130ka). At that time, Arabia underwent a predominantly moist climatic phase that was interwoven with short windows of semi-arid to arid conditions (Edgell, 2006; Vincent, 2008) which might have resulted in habitat fragmentation and subsequent population isolation. Since the Last Interglacial, however, the conditions became generally more arid again and Bunopus started repopulating Arabia. The considerable range expansion in the latest Pleistocene to early Holocene may be linked with the hyper-aridification of Arabia and the expansion of sand dunes at that time (Vincent, 2008). It is worth noting that the seabed of what is today the shallow Arabian Gulf presented suitable habitat for Bunopus during the glacial sea-level drops and likely formed a corridor for migration between the Iranian and Arabian populations (Lambeck, 1996). Taken together, the dynamic system of pulsating habitats that oscillated in response to the changing climatic conditions between humid and hyper-arid seems to have played a crucial role in shaping the present and past distribution of the desert adapted Bunopus geckos in Arabia.

4.3 | Dispersal across Arabia

WILEY- Journal of Biogeogram

The past distribution models imply that the range of *Bunopus* sp. 4 oscillated substantially according to the prevailing climatic conditions in Arabia. For example, most of eastern Arabia seemed to have supported suitable conditions for *Bunopus* continuously since the mid-Pliocene, while central Arabia became inhabitable only very recently in the late Holocene (Figure 4). The uninterrupted presence of *Bunopus* sp. 4 in eastern Arabia might have been allowed by the absence of dispersal barriers in the region. Most of the region is and has been suitable for the geckos since the mid-Pliocene, with only the massif of the Hajar Mountains always presenting an insurmountable barrier for this lowland-dwelling species. The continuous presence of *Bunopus* in eastern Arabia also likely explains the genetic homogeneity of local populations along the second MEMGENE axis (Figure 6).

Based on the suitable habitat models, the strongest environmental predictor of the genus' distribution in Arabia is the elevation. *Bunopus* rarely occurs above 500m in Arabia (Šmíd et al., 2021) and it is thus not present in the mountain ranges that rim the peninsula: the Hajar Mountains in the east, Dhofar in the south, and the Asir and Hejaz Mountains in the west. This may be paralleled in the lineages of the Iranian clade of *Bunopus* that inhabit the uplifted Iranian Plateau. Although we did not include them in the distribution modelling, it is obvious from the available distribution data that they also avoid high-elevation regions such as the Zagros Mountains in the southwest of Iran (Šmíd et al., 2014). Whether the Iranian and Arabian *Bunopus* lineages show some differences in the environmental niches they occupy should be addressed in a separate study.

The wide belt of suitable habitat that stretches longitudinally across Arabia from the Arabian Gulf to the Red Sea constitutes the dominant contemporary dispersal corridor for Bunopus (Figure 5). By connecting the eastern and western margins of the peninsula it enables longitudinal migration between geographically disparate regions with subsequent population connectivity and genetic homogenisation over this vast territory (Figure 6). This corridor turns northwards at the Red Sea coast and runs to Jordan and thus provides connection between the southern Jordanian and Israeli populations with the central Arabian ones. Of note is the origin of the isolated Yemeni populations. Although they are geographically closer to those from southern Saudi Arabia, they more likely originated from southern Oman to which they are also genetically most similar. Such a biogeographic route also conforms to the general distributional patterns in the area (de Pous et al., 2016; Machado et al., 2019; Sindaco et al., 2018).

It should be stressed that although the distribution models performed well for such a broadly distributed and generalist taxon, there were still regions where *Bunopus* was not predicted to occur despite the presence of records in these areas. For example, several distribution records are available from northern Saudi Arabia, but the region was not found suitable for the geckos. If these places are truly suboptimal for *Bunopus* and the existing distribution points represent sinking populations or if the predicted absence is caused by the scarcity of data is at the moment uncertain. The latter possibility seems very plausible. However, our field experience has taught us that *Bunopus* population densities vary considerably across Arabia and that while in some regions it is the most abundant reptile species (e.g., in central Saudi Arabia around the city of Riyadh), in other seemingly suitable desert habitats it is extremely rare (e.g., southwestern Arabia). Hence, until more field work is conducted in northern Arabia, we prefer not to draw conclusions on the predicted

4.4 | Taxonomic account

absence of Bunopus in these places.

The results of all phylogenetic analyses conducted for this study support the paraphyly of *Bunopus* with *Crossobamon orientalis* being nested within *Bunopus*. Similar results have been confirmed in some previous studies, which were however always based on much sparser taxon sampling (Agarwal et al., 2014; Pyron et al., 2013; Zheng & Wiens, 2016). The genus *Crossobamon* currently contains two species – *C. eversmanni* and *C. orientalis*. The phylogenetic position of the former species in the tree of Khosravani et al. (2017) remained unresolved, and the monophyly of *Bunopus* was not supported. Our sampling of *C. eversmanni* covered broadly the distribution of the species and our phylogenetic results enable us to infer its position with more confidence. In summary, the results of all our analyses indicate that the genus *Bunopus* is paraphyletic with respect to *C. orientalis* and the genus *Crossobamon* is polyphyletic.

Crossobamon eversmanni (Wiegmann, 1834) is the type species of the genus *Crossobamon* Boettger, 1888 and as such retains its generic name. To resolve the above issue of para- and polyphyly, we propose to reassign *Crossobamon orientalis* to the genus *Bunopus*, the new combination being *Bunopus orientalis* comb. nov. (Blanford, 1876) that should be used from now on. A detailed list of chresonyms is available in the Supplementary Information. The cryptic diversity within the genus *Bunopus* (Červenka et al., 2008; Khosravani et al., 2017) as well as the status of the enigmatic *B. blanfordii* (Bauer et al., 2013) remain a task for future taxonomic investigation. Besides the polyphyly of *Crossobamon* found in our study we also noted deep genetic divergences within *C. eversmanni* throughout its range, suggesting possible cryptic diversity.

ACKNOWLEDGEMENTS

We are indebted to the National Center for Wildlife (NCW), Saudi Arabia, and its staff who participated on the field trips, their support and field work arrangements. Field work in Oman was carried out in collaboration with the Nature Conservation Department of the Ministry of Environment and Climate Affairs, MECA, now the Environment Authority (Refs: 08/2005; 16/2008; 38/2010; 12/2011; 13/2013; 21/2013; 37/2014; 31/2016). Field work in the UAE was supported by His Highness Sheikh Dr. Sultan bin Mohammed Al Qasimi, Supreme Council Member and Ruler of Sharjah, and by H. E. Ms. Hana Saif al Suwaidi, Chairperson of the Environment and Protected Areas Authority, Sharjah. We thank Omer Baeshen, Environment Protection Agency, Sana'a, Republic of Yemen for issuing the collecting permit (Ref 10/2007). Field work in Jordan was facilitated by Zuhair S. Amr, Jordan University of Science and Technology, and Mohammad A. Abu Baker, The University of Jordan. Fieldwork in Kuwait was facilitated by Abdulrahman Al-Sirhan Alenezi. Field work in Israel was organised with Boaz Shacham. Fieldwork in Pakistan was performed under the permit of the Pakistan Museum of Natural History, Islamabad No. PMNH/EST1[89]/05. Fieldwork in Uzbekistan was performed under the permit issued by the Ministry of Ecology, Environmental Protection and Climate Change of the Republic of Uzbekistan Ref 11/2023, application No. 91928283.

We would like to thank Wolfgang Böhme, Claudia Koch and Morris Flecks (ZFMK, Bonn, Germany), Carol Spencer (MVZ, Berkeley, USA), Lauren Scheinberg (CAS, San Francisco, USA), Shai Meiri and Erez Maza (SMNH, TAU, Tel Aviv, Israel), Lukáš Kratochvíl and Jan Červenka (Charles University, Prague, Czech Republic), and Daniel Koleška (Zoopark Zájezd, Zájezd, Czech Republic) for providing tissue samples. The first author would like to thank all employees of the National Museum in Prague for providing laboratory and work facilities, for laboratory assistance and technical support namely to Tatiana Aghová, Marek Uvizl and Eva Ašenbrenerová. The first author is also thankful to Karin Tamar for her support during his stay at the Institute of Evolutionary Biology (Barcelona, Spain). The work of LP was supported by the Grant Agency of Charles University (GAUK, project number 148522) and by Charles University grant no. SVV260685/2023. RM was supported by Pakistan Science Foundation and National Natural Science Foundation Of China grant No./Project No. PSF/CRP NSFC III/Bio/C-PMNH (13). JŠ was supported by the Czech Science Foundation (GACR, project number 22-12757S), by the Charles University Research Centre program No. 204069 and by the Ministry of Culture of the Czech Republic (DKRVO 2024-2028/6.I.a, 00023272). Open access publishing facilitated by Univerzita Karlova, as part of the Wiley-CzechELib agreement.

CONFLICT OF INTEREST STATEMENT

As authors of this manuscript, we declare no conflict of interest in connection with this paper.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the supplementary material of this article.

ORCID

Lukáš Pola D https://orcid.org/0000-0002-0086-2781 Mohammed Shobrak D https://orcid.org/0000-0002-6053-8289 Daniel Jablonski D https://orcid.org/0000-0002-5394-0114 Rafaqat Masroor D https://orcid.org/0000-0001-6248-546X Salvador Carranza D https://orcid.org/0000-0002-5378-3008 Jiří Šmíd D https://orcid.org/0000-0002-0309-209X

REFERENCES

Agarwal, I., Bauer, A. M., Jackman, T. R., & Karanth, P. (2014). Cryptic species and Miocene diversification of Palaearctic naked-toed geckos (Squamata: Gekkonidae) in the Indian dry zone. *Zoologica Scripta*, 43, 455–471.

nal of

- Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. *Ecography*, 38, 541–545.
- Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), (pp. 267–281).
- Anton, D. (1984). Aspects of geomorphological evolution; paleosols and dunes in Saudi Arabia. In *Quaternary Period in Saudi Arabia* (pp. 275– 296). Springer Vienna.
- Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species-climate impact models under climate change. *Global Change Biology*, 11, 1504–1513.
- Badiane, A., Garcia-Porta, J., Červenka, J., Kratochvíl, L., Sindaco, R., Robinson, M. D., Morales, H., Mazuch, T., Price, T., Amat, F., Shobrak, M. Y., Wilms, T., Simó-Riudalbas, M., Ahmadzadeh, F., Papenfuss, T. J., Cluchier, A., Viglione, J., & Carranza, S. (2014). Phylogenetic relationships of semaphore geckos (Squamata: Sphaerodactylidae: *Pristurus*) with an assessment of the taxonomy of *Pristurus rupestris*. *Zootaxa*, 3835, 33–58.
- Bauer, A. M., Masroor, R., Titus-Mcquillan, J., Heinicke, M. P., Daza, J. D., & Jackman, T. R. (2013). A preliminary phylogeny of the Palearctic naked-toed geckos (Reptilia: Squamata: Gekkonidae) with taxonomic implications. *Zootaxa*, 3599, 301–324.
- Bosworth, W., Huchon, P., & McClay, K. (2005). The Red Sea and Gulf of Aden basins. *Journal of African Earth Sciences*, 43, 334–378.
- Bouckaert, R., Alvarado-Mora, M. V., & Pinho, J. R. R. (2013). Evolutionary rates and HBV: Issues of rate estimation with Bayesian molecular methods. *Antiviral Therapy*, 18, 497–503.
- Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kuhnert, D., De Maio, A., Matschiner, M., Mendes, F. K., Muller, N. F., Ogilvie, H. A., Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., ... Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS Computational Biology*, *15*, e1006650.
- Breeze, P. S., Drake, N. A., Groucutt, H. S., Parton, A., Jennings, R. P., White, T. S., Clark-Balzan, L., Shipton, C., Scerri, E. M. L., Stimpson, C. M., Crassard, R., Hilbert, Y., Alsharekh, A., Al-Omari, A., & Petraglia, M. D. (2015). Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. *Quaternary International*, 382, 98–119.
- Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5, 694–700.
- Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. *Scientific Data*, *5*, 180254.
- Burriel-Carranza, B., Tarroso, P., Els, J., Gardner, A., Soorae, P., Mohammed, A. A., Tubati, S. R. K., Eltayeb, M. M., Shah, J. N., Tejero-Cicuéndez, H., Simó-Riudalbas, M., Pleguezuelos, J. M., Fernández-Guiberteau, D., Šmíd, J., & Carranza, S. (2019). An integrative assessment of the diversity, phylogeny, distribution, and conservation of the terrestrial reptiles (Sauropsida, Squamata) of The United Arab Emirates. *PLoS One*, 14, e0216273.
- Carranza, S., & Arnold, E. N. (2012). A review of the geckos of the genus *Hemidactylus* (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. *Zootaxa*, 3378(1), 1–95.
- Carranza, S., Burriel-Carranza, B., & Els, J. (2021). A field guide to the reptiles of Oman. Consejo Superior de Investigaciones Científicas.

ILEY^{_} Journal of Biogeograph

- Carranza, S., Simó-Riudalbas, M., Jayasinghe, S., Wilms, T., & Els, J. (2016). Microendemicity in the northern Hajar Mountains of Oman and The United Arab Emirates with the description of two new species of geckos of the genus Asaccus (Squamata: Phyllodactylidae). *PeerJ*, 4, e2371.
- Carranza, S., Xipell, M., Tarroso, P., Gardner, A., Arnold, E. N., Robinson, M. D., Simó-Riudalbas, M., Vasconcelos, R., de Pous, P., Amat, F., Šmíd, J., Sindaco, R., Metallinou, M., & Al Akhzami, S. N. (2018). Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata). *PLoS One*, *13*, e0190389.
- Castresana, J. (2000). Selection of conserved blocks from multiple alignments for rheir use in phylogenetic analysis. *Molecular Biology and Evolution*, 17, 540–552.
- Červenka, J., Kratochvíl, L., & Frynta, D. (2008). Phylogeny and taxonomy of the middle eastern geckos of the genus *Cyrtopodion* and their selected relatives. *Zootaxa*, 1931, 25–36.
- Chan, L. M., Brown, J. L., & Yoder, A. D. (2011). Integrating statistical genetic and geospatial methods brings new power to phylogeography. *Molecular Phylogenetics and Evolution*, 59, 523–537.
- Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. *Molecular Ecology*, *9*, 1657–1659.
- Connor, T., Hull, V., Viña, A., Shortridge, A., Tang, Y., Zhang, J., ... Liu, J. (2018). Effects of grain size and niche breadth on species distribution modeling. *Ecography*, 41, 1270–1282.
- Dabbagh, A. E., Al-Hinai, K. G., & Khan, M. A. (2020). Evaluation of the shuttle imaging radar (SIR-C/X-SAR) data for mapping paleodrainage systems in the Kingdom of Saudi Arabia. In *Quaternary Deserts and Climatic Change* (pp. 483–493). CRC Press.
- de Pous, P., Machado, L., Metallinou, M., Červenka, J., Kratochvíl, L., Paschou, N., ... Carranza, S. (2016). Taxonomy and biogeography of Bunopus spatalurus (Reptilia; Gekkonidae) from the Arabian peninsula. Journal of Zoological Systematics and Evolutionary Research, 54, 67–81.
- Dinies, M., Plessen, B., Neef, R., & Kürschner, H. (2015). When the desert was green: Grassland expansion during the early Holocene in northwestern Arabia. *Quaternary International*, 382, 293-302.
- Dolan, A. M., Haywood, A. M., Hunter, S. J., Tindall, J. C., Dowsett, H. J., Hill, D. J., & Pickering, S. J. (2015). Modelling the enigmatic late Pliocene glacial event Marine isotope stage M2. *Global and Planetary Change*, 128, 47-60.
- Douglas, M. E., Douglas, M. R., Schuett, G. W., & Porras, L. W. (2006). Evolution of rattlesnakes (Viperidae; *Crotalus*) in the warm deserts of western North America shaped by Neogene vicariance and quaternary climate change. *Molecular Ecology*, 15, 3353–3374.
- Durant, S. M., Pettorelli, N., Bashir, S., Woodroffe, R., Wacher, T., de Ornellas, P., Ransom, C., Abáigar, T., Abdelgadir, M., el Alqamy, H., Beddiaf, M., Belbachir, F., Belbachir-Bazi, A., Berbash, A. A., Beudels-Jamar, R., Boitani, L., Breitenmoser, C., Cano, M., Chardonnet, P., ... Baillie, J. E. M. (2012). Forgotten biodiversity in desert ecosystems. *Science*, 336, 1379–1380.
- Edgell, H. S. (2006). Arabian deserts: nature, origin and evolution. Springer.
- Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.
- ESRI. (2011). ArcGIS Desktop. Release, 10. https://www.esri.com/en-us/ arcgis/about-arcgis/overview
- Fordham, D. A., Saltré, F., Haythorne, S., Wigley, T. M. L., Otto-Bliesner, B. L., Chan, K. C., & Brook, B. W. (2017). PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. *Ecography*, 40, 1348–1358.
- Galpern, P., Peres-Neto, P. R., Polfus, J., & Manseau, M. (2014). MEMGENE: Spatial pattern detection in genetic distance data. *Methods in Ecology and Evolution*, 5, 1116–1120.

- Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2012). Repeated origin and loss of adhesive toepads in geckos. *PLoS One*, 7, e39429.
- Garcia-Porta, J., Simó-Riudalbas, M., Robinson, M., & Carranza, S. (2017). Diversification in arid mountains: Biogeography and cryptic diversity of Pristurus rupestris rupestris in Arabia. Journal of Biogeography, 44, 1694–1704.
- Glennie, K. (2020). The desert of southeast Arabia: A product of quaternary climatic change. In *Quaternary Deserts and Climatic Change* (pp. 279–291). CRC Press.
- Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.
- Heled, J., & Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. *BMC Evolutionary Biology*, 8, 289.
- Hesse, P. P., Magee, J. W., & van der Kaars, S. (2004). Late quaternary climates of the Australian arid zone: A review. *Quaternary International*, 118-119, 87-102.
- Hijmans, R. J., van Etten, J., Mattiuzzi, M., & Hijmans, M. R. J. (2014). Package 'raster'. https://CRAN.R-project.org/package=raster
- Jombart, T., & Ahmed, I. (2011). Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. *Bioinformatics*, *27*, 3070–3071.
- Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nature Methods*, 14, 587–589.
- Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. *Scientific Data*, 4, 170122.
- Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics*, 20, 1160–1166.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649.
- Khosravani, A., Rastegar-Pouyani, E., Rastegar-Pouyani, N., Oraie, H., & Papenfuss, T. J. (2017). Resolving species delimitation within the genus *Bunopus* Blanford, 1874 (Squamata: Gekkonidae) in Iran using DNA barcoding approach. *Zootaxa*, 4365, 467–479.
- Lambeck, K. (1996). Shoreline reconstructions for the Persian Gulf since the last glacial maximum. *Earth and Planetary Science Letters*, 142, 43–57.
- Landis, M. J., Matzke, N. J., Moore, B. R., & Huelsenbeck, J. P. (2013). Bayesian analysis of biogeography when the number of areas is large. Systematic Biology, 62, 789–804.
- Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. *Methods in Ecology and Evolution*, 6, 1110–1116.
- Machado, L., Salvi, D., Harris, J. D., Brito, J. C., Crochet, P.-A., Geniez, P., ... Carranza, S. (2021). Systematics, biogeography and evolution of the Saharo-Arabian naked-toed geckos genus Tropiocolotes. *Molecular Phylogenetics and Evolution*, 155, 106969.
- Machado, L., Šmíd, J., Mazuch, T., Sindaco, R., al Shukaili, A. S., & Carranza, S. (2019). Systematics of the Saharo-Arabian clade of the Palearctic naked-toed geckos with the description of a new species of Tropiocolotes endemic to Oman. Journal of Zoological Systematics and Evolutionary Research, 57, 159–178.
- Matzke, N. J. (2013). BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R scripts. R package, version 0.2 1, 2013.
- Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island clades. *Systematic Biology*, 63, 951–970.
- McClure, H. (1976). Radiocarbon chronology of late quaternary lakes in the Arabian Desert. *Nature*, *2*63, 755–756.

- Metallinou, M., Arnold, E. N., Crochet, P. A., Geniez, P., Brito, J. C., Lymberakis, P., ... Carranza, S. (2012). Conquering the Sahara and Arabian deserts: Systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae). BMC Evolutionary Biology, 12, 258.
- Metallinou, M., Červenka, J., Crochet, P. A., Kratochvíl, L., Wilms, T., Geniez, P., Shobrak, M. Y., Brito, J. C., & Carranza, S. (2015). Species on the rocks: Systematics and biogeography of the rockdwelling *Ptyodactylus* geckos (Squamata: Phyllodactylidae) in North Africa and Arabia. *Molecular Phylogenetics and Evolution*, 85, 208–220.
- Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, GCE 2010.
- Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. *Molecular Biology and Evolution*, 30, 1188–1195.
- Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution*, 32, 268–274.
- Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., & Hu, A. (2006). Simulating arctic climate warmth and icefield retreat in the last Interglaciation. *Science*, 311, 1751–1753.
- Parker, A. G. (2010). In M. D. Petraglia & J. I. Rose (Eds.), Pleistocene climate change in Arabia: Developing a framework for Hominin dispersal over the last 350 ka BT - The evolution of human populations in Arabia: Paleoenvironments, Prehistory and Genetics (pp. 39–49). Springer Netherlands.
- Pepper, M., & Keogh, J. S. (2021). Life in the "dead heart" of Australia: The geohistory of the Australian deserts and its impact on genetic diversity of arid zone lizards. *Journal of Biogeography*, 48, 716–746.
- Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. *Ecological Modelling*, 190, 231–259.
- Pola, L., Hejduk, V., Zíka, A., Winkelhöfer, T., Šmíd, J., Carranza, S., Shobrak, M., Abu Baker, M., & Amr, Z. S. (2021). Small and overlooked: Phylogeny of the genus *Trigonodactylus* (Squamata: Gekkonidae), with the first record of *Trigonodactylus arabicus* from Jordan. *Saudi Journal of Biological Sciences*, 28, 3511–3516.
- Popov, S. V., Rögl, F., Rozanov, A. Y., Steininger, F. F., Shcherba, I. G., & Kovac, M. (2004). Lithological-paleogeographic maps of Paratethys 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg.
- Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. *BMC Evolutionary Biology*, 13, 93.
- Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using tracer 1.7. *Systematic Biology*, *67*, 901–904.
- Ree, R. H., & Sanmartín, I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. *Journal of Biogeography*, 45, 741–749.
- Ree, R. H., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. *Systematic Biology*, *57*, 4–14.
- Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. *Systematic Biology*, *46*, 195–203.
- Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. *Molecular Biology and Evolution*, 34, 3299–3302.

- Shimodaira, H., & Hasegawa, M. (2001). CONSEL: For assessing the confidence of phylogenetic tree selection. *Bioinformatics*, *17*, 1246–1247.
- Silvestro, D., & Michalak, I. (2012). raxmlGUI: A graphical front-end for RAxML. Organisms Diversity & Evolution, 12, 335–337.
- Simó-Riudalbas, M., de Pous, P., Els, J., Jayasinghe, S., Péntek-Zakar, E., Wilms, T., ... Carranza, S. (2017). Cryptic diversity in *Ptyodactylus* (Reptilia: Gekkonidae) from the northern Hajar mountains of Oman and The United Arab Emirates uncovered by an integrative taxonomic approach. *PLoS One*, 12, 1–25.
- Simó-Riudalbas, M., Tamar, K., Šmíd, J., Mitsi, P., Sindaco, R., Chirio, L., & Carranza, S. (2019). Biogeography of *Mesalina* (Reptilia: Lacertidae), with special emphasis on the *Mesalina adramitana* group from Arabia and the Socotra archipelago. *Molecular Phylogenetics and Evolution*, 137, 300–312.
- Simó-Riudalbas, M., Tarroso, P., Papenfuss, T., Al-Sariri, T., & Carranza, S. (2018). Systematics, biogeography and evolution of Asaccus gallagheri (Squamata, Phyllodactylidae) with the description of a new endemic species from Oman. Systematics and Biodiversity, 16, 323–339.
- Sindaco, R., & Jeremčenko, V. K. (2008). The reptiles of the Western Palearctic. 1. Annotated checklist and distributional atlas of the turtles, crocodiles, amphisbaenians and lizards of Europe, North Africa, Middle East and Central Asia. Edizioni Belvedere.
- Sindaco, R., Simó-Riudalbas, M., Sacchi, R., & Carranza, S. (2018). Systematics of the *Mesalina guttulata* species complex (Squamata: Lacertidae) from Arabia with the description of two new species. *Zootaxa*, 4429, 513–547.
- Šmíd, J., Carranza, S., Kratochvíl, L., Gvoždík, V., Nasher, A. K., & Moravec, J. (2013). Out of Arabia: A complex biogeographic history of multiple vicariance and dispersal events in the gecko genus *Hemidactylus* (Reptilia: Gekkonidae). *PLoS One, 8*, e64018.
- Šmíd, J., Moravec, J., Kodym, P., Kratochvíl, L., Yousefkhani, S. S. H., Rastegar-Pouyani, E., & Frynta, D. (2014). Annotated checklist and distribution of the lizards of Iran. *Zootaxa*, 3855(1), 1–97.
- Šmíd, J., Moravec, J., Kratochvíl, L., Nasher, A. K., Mazuch, T., Gvoždík, V., & Carranza, S. (2015). Multilocus phylogeny and taxonomic revision of the *Hemidactylus robustus* species group (Reptilia, Gekkonidae) with descriptions of three new species from Yemen and Ethiopia. Systematics and Biodiversity, 13, 346–368.
- Šmíd, J., Shobrak, M., Wilms, T., Joger, U., & Carranza, S. (2017). Endemic diversification in the mountains: Genetic, morphological, and geographical differentiation of the *Hemidactylus* geckos in southwestern Arabia. *Organisms*, *Diversity and Evolution*, 17, 267–285.
- Šmíd, J., Sindaco, R., Shobrak, M., Busais, S., Tamar, K., Aghová, T., ... Carranza, S. (2021). Diversity patterns and evolutionary history of Arabian squamates. *Journal of Biogeography*, 48, 1183–1199.
- Šmíd, J., Uvizl, M., Shobrak, M., Busais, S., Salim, A. F. A., AlGethami, R. H. M., ... Carranza, S. (2023). Diversification of *Hemidactylus* geckos (Squamata: Gekkonidae) in coastal plains and islands of southwestern Arabia with descriptions and complete mitochondrial genomes of two endemic species to Saudi Arabia. *Organisms Diversity & Evolution*, 23, 185–207.
- Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. *The American Journal of Human Genetics*, 68, 978–989.
- Stimpson, C. M., Lister, A., Parton, A., Clark-Balzan, L., Breeze, P. S., Drake, N. A., ... Petraglia, M. D. (2016). Middle Pleistocene vertebrate fossils from the Nefud Desert, Saudi Arabia: Implications for biogeography and palaeoecology. *Quaternary Science Reviews*, 143, 13–36.
- Tamar, K., Els, J., Kornilios, P., Soorae, P., Tarroso, P., Thanou, E., ... Carranza, S. (2021). The demise of a wonder: Evolutionary history

ILEY^{_} Journal of Biogeography

and conservation assessments of the wonder gecko *Teratoscincus keyserlingii* (Gekkota, Sphaerodactylidae) in Arabia. *PLoS One*, *16*, e0244150.

- Tamar, K., Metallinou, M., Wilms, T., Schmitz, A., Crochet, P.-A., Geniez, P., & Carranza, S. (2018). Evolutionary history of spiny-tailed lizards (Agamidae: Uromastyx) from the Saharo-Arabian region. Zoologica Scripta, 47, 159–173.
- Tamar, K., Mitsi, P., Simó-Riudalbas, M., Tejero-Cicuéndez, H., Al-Sariri, T., & Carranza, S. (2019). Systematics, biogeography, and evolution of *Pristurus minimus* (Squamata, Sphaerodactylidae) with the discovery of the smallest Arabian vertebrate. *Systematics and Biodiversity*, 17, 349–366.
- Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. *Genetics*, 132, 619–633.
- Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research*, 44, W232–W235.
- Vasconcelos, R., & Carranza, S. (2014). Systematics and biogeography of *Hemidactylus homoeolepis* Blanford, 1881 (Squamata: Gekkonidae), with the description of a new species from Arabia. *Zootaxa*, 3835, 501–527.
- Venables, W. N., & Ripley, B. D. (2002). *Modern applied statistics with S* (Fourth ed.). Springer.
- Vincent, P. (2008). Saudi Arabia: an environmental overview. Taylor & Francis Group.
- Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. *Ecography*, 33, 607–611.
- Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. *Molecular Phylogenetics and Evolution*, 94, 537–547.
- Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra-Diaz, J. M., Thuiller, W., ... Merow, C. (2020). A standard protocol for reporting species distribution models. *Ecography*, 43, 1261–1277.

BIOSKETCH

Author contributions: Lukáš Pola and Jiří Šmíd conceived the project; Lukáš Pola, Pierre-André Crochet, Philippe Geniez, Mohammed Shobrak, Salem Busais, Daniel Jablonski, Rafaqat Masroor, Timur Abduraupov, Salvador Carranza and Jiří Šmíd conducted field work to collected distribution data and samples for genetic analysis; Lukáš Pola collected data from the literature for spatial analyses; Lukáš Pola did laboratory work and DNA sequence analysis; Lukáš Pola and Jiří Šmíd conducted phylogenetic analyses; Jiří Šmíd analysed the spatial data; Lukáš Pola and Jiří Šmíd led the writing with contributions from all authors.

AUTHOR BIOGRAPHY

Lukáš Pola is a herpetologist interested in biogeography, evolutionary history and systematics of the Middle Eastern squamate reptiles. This study was a part of his PhD project at Faculty of Science, Charles University focused on the evolution, biogeography and systematics of the Palearctic naked-toed geckos.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Pola, L., Crochet, P.-A., Geniez, P., Shobrak, M., Busais, S., Jablonski, D., Masroor, R., Abduraupov, T., Carranza, S., & Šmíd, J. (2024). Some like it hot: Past and present phylogeography of a desert dwelling gecko across the Arabian Peninsula. *Journal of Biogeography*, *51*, 1244–1258. https://doi.org/10.1111/jbi.14823

Supplementary Information

Some like it hot: Past and present phylogeography of a desert dwelling gecko across the Arabian Peninsula

Lukáš Pola, Pierre-André Crochet, Philippe Geniez, Mohammed Shobrak, Salem Busais, Daniel Jablonski, Rafaqat Masroor, Timur Abduraupov, Salvador Carranza, Jiří Šmíd

Generic reassignment of Crossobamon orientalis to the genus Bunopus

As described in the main text of this article, we herewith use genetic data to reassign *Crossobamon orientalis* to the genus *Bunopus*, with the new combination of the name being *Bunopus orientalis* **comb**. **nov**. (Blanford, 1876). Below here we provide a detailed list of chresonyms, it is taxon names under which the species has appeared in the published literature. Museum acronyms used in the text below are as follows: ZSI - Zoological Survey of India, Kolkata, India; BMNH - British Museum of Natural History, London, the United Kingdom (currently NHMUK, National History Museum, UK).

Chresonymy list

Bunopus orientalis comb. nov. (Blanford, 1876)

Stenodactylus orientalis Blanford, 1876. Syntypes (3): ZSI R 5589 from 'hills west of Shikárpur district', the ZSI label says 'Hills of Larkana, Sind'; BMNH 1946.8.23.37 from 'Near Rohri'; BMNH 1946.8.23.50 from 'Rhori, India' [today's Sindh Province, in southern Pakistan]

Stenodactylus orientalis in: Murray (1884); Boulenger (1885, 1890); Anderson (1898); Annandale (1906); Smith (1935); Minton (1962, 1966); Das (1966); Mertens (1969); Werner (1976); Sharma and Vazirani (1977); Biswas & Sanyal (1977); Khan (1980, 1985); Murthy (1990); Tikader and Sharma (1992); Sharma (2002)

Stenodactylus dunstervillei: Murray (1884). Type (1): BMNH 1946.8.23.26 from 'Halla, Sind'

Crossobamon orientalis in: Kluge (1967, 1991, 1993); Khan (2002, 2004, 2006); Szczerbak (1986); Szczerbak & Golubev (1996); Das (1998, 1999); Anderson (1999); Iffat (2006); Feng et al. (2007); Baig et al. (2008); Sindaco & Jeremčenko (2008); Agarwal et al. (2009, 2013, 2014, 2015); Venugopal (2010); Rais et al. (2011, 2013); Fujita & Papenfuss (2011); Khan et al. (2012); Masroor (2012); Gamble et al. (2012); Metallinou et al. (2012); Bauer (2013); Bauer et al. (2013); Solanki et al. (2015); De Pous et al. (2016); Aengals et al. (2018); Machado et al. (2019, 2021); Uetz et al. (2019); Kumawat and Purohit (2020); Ali et al. (2021)

References

- Aengals, R., Sathish Kumar, V. M., Palot, M. J., & Ganesh, S. R. (2018). A checklist of reptiles of India. Zoological Survey of India, Kolkata, India.
- Agarwal, I., Bauer, A. M., Jackman, T. R., & Karanth, P. (2014). Cryptic species and Miocene diversification of Palaearctic naked-toed geckos (Squamata: Gekkonidae) in the Indian dry zone. *Zoologica Scripta*, 43, 455–471.
- Agarwal, I., Goyal, S. P., & Qureshi, Q. (2015). Lizards of the Thar Desert Resource partitioning and community composition. *Journal of Arid Environments*, *118*, 58–64.
- Agarwal, I., & Iyengar, A. N. (2013). Further records of the Sindh awl-headed snake, *Lytorhynchus paradoxus* (Günther, 1875), from India with notes on its habitat and natural history. *Russian Journal of Herpetology*, 20, 165–170.

- Agarwal, I., Mistry, V. K., & Tillack, F. (2009). On the Rajasthan toad-headed lizard, *Bufoniceps laungwalaensis* (Sharma, 1978) an endemic Agamid from the Thar Desert. *SAURIA*, 30, 37–48.
- Ali, W., Javid, A., Hussain, A., Bukhari, S. M., & Hussain, S. (2021). Preliminary assessment of the diversity and habitat preferences of herpetofauna in Cholistan Desert, Pakistan. *Russian Journal of Herpetology*, 28, 375–379.
- Anderson, J. (1898). *Zoology of Egypt: Volume first Reptilia and Batrachia*. Taylor and Francis, Red Lion Court, Fleet Street, London, United Kingdom.
- Anderson, S. C. (1999). *The lizards of Iran* (A. E. Leviton, Ed.). Society for the Study of Amphibians and Reptiles, Ithaka, USA.
- Annandale, N. (1906). Notes on the fauna of a desert tract in southern India. Part I. batrachians and reptiles, with remarks on the reptiles of the desert region of the north-west frontier. *Memoirs of the Asiatic Society of Bengal*, *1*, 183–222.
- Baig, K. J., Masroor, R., & Arshad, M. (2008). Biodiversity and ecology of the herpetofauna of Cholistan Desert, Pakistan. *Russian Journal of Herpetology*, *15*, 193–205.
- Bauer, A. M. (2013). *Geckos: The Animal Answer Guide*. The Johns Hopkins University Press, Baltimore, USA.
- Bauer, A. M., Masroor, R., Titus-Mcquillan, J., Heinicke, M. P., Daza, J. D., & Jackman, T. R. (2013). A preliminary phylogeny of the Palearctic naked-toed geckos (Reptilia: Squamata: Gekkonidae) with taxonomic implications. *Zootaxa*, 3599, 301–324.
- Biswas, L. N., & Sanyal, D. P. (1977). Fauna of Rajasthan, India, part Reptilia. *Records of Zoological Survey of India*, 73, 247–269.
- Blanford, W. T. (1876). On some lizards from Sind, with descriptions of new species of *Ptyodactylus*, *Stenodactylus*, and *Trapelus*. *Journal of the Asiatic Society of Bengal*, 45, 18–26.
- Boulenger, G. A. (1885). Catalogue of the lizards in the British Museum (Natural History). Vol.I. Geckonidae, Eublepharidae, Uroplatidae, Pygopodidae, Agamidae: Vol. I (2nd ed.).Order of the trustees, London, United Kingdom.
- Boulenger, G. A. (1890). The Fauna of British India, including Ceylon and Burma. Reptilia and Batrachia (W. T. Blanford, Ed.). Taylor and Francis, Red Lion Court, Fleet Street, London, United Kingdom.
- Das, S. M. (1966). Palearctic elements in the fauna of Kashmir. Nature, 212, 1327–1330.
- Das, I. (1999). The dates of publication of amphibian and reptile names by Blanford and Stoliczka in the Journal and Proceedings of the Asiatic Society of Bengal. *Asiatic Herpetological Research*, *8*, 18–24.
- Das, I., Dattagupta, B., & Gayen, N. C. (1998). History and catalogue of reptile types in the collection of the Zoological Survey of India. *Journal of South Asian Natural History*, *3*, 121–172.

- de Pous, P., Machado, L., Metallinou, M., Červenka, J., Kratochvíl, L., Paschou, N., ... Carranza, S. (2016). Taxonomy and biogeography of *Bunopus spatalurus* (Reptilia; Gekkonidae) from the Arabian Peninsula. *Journal of Zoological Systematics and Evolutionary Research*, 54, 67–81.
- Feng, J., Han, D., Bauer, A. M., & Zhou, K. (2007). Interrelationships among Gekkonid geckos inferred from mitochondrial and nuclear gene sequences. *Zoological Science*, 24, 656– 665.
- Fujita, M. K., & Papenfuss, T. J. (2011). Molecular systematics of *Stenodactylus* (Gekkonidae), an Afro-Arabian gecko species complex. *Molecular Phylogenetics and Evolution*, 58, 71– 75.
- Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2012). Repeated origin and loss of adhesive toepads in Geckos. *PLoS ONE*, 7.
- Iffat, F. (2006). On the lizards of Karachi coast. *Records Zoological Survey of Pakistan*, 17, 37–40.
- Khan, M. S. (1980). Affinities and zoogeography of herpetiles of Pakistan. *BIOLOGIA*, 26, 113–171.
- Khan, M. S. (1985). An interesting collection of amphibians and reptiles from Cholistan Desert, Punjab, Pakistan. *Journal of the Bombay Natural History Society*, 82, 144–148
- Khan, M. S. (2002). Key and checklist to the lizards of Pakistan (Reptilia: Squamata: Sauria). *Herpetozoa*, *15*, 99–119.
- Khan, M. S. (2004). Annotated checklist of amphibians and reptiles of Pakistan. *Asiatic Herpetological Research*, *10*, 191–201.
- Khan, M. S. (2006). *The amphibians and reptiles of Pakistan*. Krieger Publishing Company, Malabar, USA.
- Khan, M. Z., Ghalib, S. A., Siddiqui, S., Siddiqui, T. F., Farooq, R. Y., Yasmeen, G., ... Zehra, A. (2012). Current status and distribution of reptiles of Sindh. *Journal of Basic & Applied Sciences*, 8, 160–168.
- Kluge, A. G. (1967). Higher taxonomic categories of Gekkonid lizards and their evolution. Bulletin of the American Museum of Natural History, 135, 1–60.
- Kluge, A. G. (1991). Checklist of Gekkonoid lizards. *Smithsonian Herpetological Information* Service No. 85, 1–35.
- Kluge, A. G. (1993). *Gekkonoid Lizard Taxonomy*. International Gecko Society, San Diego, USA.
- Kumawat, R., & Purohit, A. (2020). Impact and assessment of wildlife mortalities on road due to vehicle movements in Desert National Park, Rajasthan, India. Asian Journal of Conservation Biology, 9, 173–177.
- Machado, L., Šmíd, J., Mazuch, T., Sindaco, R., Al Shukaili, A. S., & Carranza, S. (2019). Systematics of the Saharo-Arabian clade of the Palearctic naked-toed geckos with the

description of a new species of *Tropiocolotes* endemic to Oman. *Journal of Zoological Systematics and Evolutionary Research*, 57, 159–178.

- Machado, L., Salvi, D., Harris, J. D., Brito, J. C., Crochet, P.-A., Geniez, P., ... Carranza, S. (2021). Systematics, biogeography and evolution of the Saharo-Arabian naked-toed geckos genus *Tropiocolotes*. *Molecular Phylogenetics and Evolution*, 155, 106969.
- Masroor, R. (2012). *A contribution to the herpetology of northern Pakistan*. Society for the Study of Amphibians and Reptiles, Ithaca, USA.
- Mertens, R. (1969). Die Amphibien und Reptilien West-Pakistans. *Stuttgarter Beiträge Zur Naturkunde*, 197, 1–96.
- Metallinou, M., Arnold, E. N., Crochet, P. A., Geniez, P., Brito, J. C., Lymberakis, P., ... Carranza, S. (2012). Conquering the Sahara and Arabian deserts: Systematics and biogeography of *Stenodactylus* geckos (Reptilia: Gekkonidae). *BMC Evolutionary Biology*, 12.
- Minton, S. A. (1962). An annotated key to the amphibians and reptiles of Sind and Las Bela, West Pakistan. *American Museum Novitates*, 2081, 1–60.
- Minton, S. A. (1966). A contribution to the herpetology of West Pakistan. Bulletin of the American Museum of Natural History, 134, 27–184.
- Murray, J. A. (1884). *The vertebrate zoology of Sind*. Richardson & Co. and Education Society's Press, London, United Kingdom.
- Rais, M., Khan, M. Z., Abbass, D., Akber, G., Nawaz, R., & ul-Islam, S. (2011). A qualitative study on wildlife of Chotiari Reservoir, Sanghar, Sindh, Pakistan. *Pakistan Journal of Zoology*, 43, 237–247.
- Rais, M., Khan, M. Z., Ghalib, S. A., Nawaz, R., Akbar, G., Islam, S. L., & Begum, A. (2013). Global conservation significance of Chotiari Wetlands Complex, Sangahr, Sindh, Pakistan. *The Journal of Animal and Plant Sciences*, 23, 1609–1617.
- Sharma, R. C. (2002). *The fauna of India and the adjacent countries (Reptilia Sauria) Volume II*. Zoological Survey of India, Calcutta, India.
- Sharma, R. C., & Vazirani, T. G. (1977). Food and feeding habits of some reptiles of Rajasthan. *Records of the Zoological Survey of India*, 73, 77–93.
- Sindaco, R., & Jeremčenko, V. K. (2008). The reptiles of the Western Palearctic, Volume 1: Annotated checklist and distributional atlas of the turtles, crocodiles, amphisbaenians and lizards of Europe, North Africa, Middle East and Central Asia. Edizioni Belvedere, Latina, Italy.
- Smith, M. A. (1935). The fauna of British India, including Ceylon and Burma. Reptilia and Amphibia. Vol. II. Sauria: Vol. II. Taylor and Francis, Ltd., Red Lion Court, Fleet Street, London, United Kingdom.
- Solanki, R., Pande, A., Vasava, A., Singh, A., & Bipin, C. M. (2015). Contributions to herpetofauna of Jaisalmer district some photographic records. *Reptile Rap*, *17*, 50–55.

- Szczerbak, N. N. (1986). Review of Gekkonidae in fauna of the USSR and neighbouring countries. Studies in Herpetology. Proceedings of the European Herpetological Meeting (3rd Ordinary General Meeting of the Societas Europaea Herpetologica), 705–710.
- Szczerbak, N. N., & Golubev, M. L. (1996). Gecko fauna of the USSR and contiguous regions (A. E. Leviton & G. R. Zug, Eds.). Society for the Study of Amphibians and Reptiles, Ithaca, USA.
- Tikader, B. K., & Sharma, R. C. (1992). *Handbook Indian lizards* (C. Zoological Survey of India, Ed.). Zoological Survey of India, Calcutta, India.
- Uetz, P., Cherikh, S., Shea, G., Ineich, I., Campbell, P. D., Doronin, I. V, ... Wallach, V. (2019). A global catalog of primary reptile type specimens. *Zootaxa*, 4695, 438–450.
- Venugopal, P. D. (2010). An updated and annotated list of Indian lizards (Reptilia: Sauria) based on a review of distribution records and checklists of Indian reptiles. *Journal of Threatened Taxa*, 2, 725–738.
- Werner, Y. L. (1976). Optimal temperatures for inner-ear performance in Gekkonoid lizards. *Journal of Experimental Zoology*, 195, 319–351.
- Werner, Y. L. (1993). Longevity of geckos (Reptilia: Lacertilia: Gekkonoidea) in captivity: An analytical review incorporating new data. *Israel Journal of Zoology*, *39*, 105–124.

Supplementary figures

Figure S1. Maximum likelihood phylogenetic tree reconstructed from the concatenated dataset of two mtDNA (12S, COI) and two nDNA (RAG2, c-mos) genes (1,842 bp). Support values (SH-aLRT/UFBoot) are indicated near nodes. Samples for which new genetic data were generated are highlighted in bold.

Figure S2. Phylogenetic tree resulting from the Bayesian inference of the concatenated dataset of two mtDNA (12S, COI) and two nDNA (RAG2, c-mos) genes (1,842 bp). Support values (Bayesian posterior probabilities) are indicated near nodes. Samples for which new genetic data were generated are highlighted in bold.

Figure S3. Contemporary dispersal corridors for the *Bunopus* geckos based on the alternative assignments of sampled sites to genetic groups as indicated by the colors of the circles: all sites of the three lineages - *B. tuberculatus* sensu stricto, *Bunopus* sp. 3, and *Bunopus* sp. 4 - pooled together (left); the three lineages treated as separate groups and samples of *Bunopus* sp. 4 further divided to five groups based on the intraspecific structure of the phylogeny (right).

Supplementary Tables

Table S1. Genetic markers with primers used for their amplification and sequencing. Table shows information on primer orientation (F - forward, R - reverse), primer sequences (5' to 3'), original reference, length of amplified fragment (bp – base pairs) and PCR conditions.

Marker	Primer name	Orientation	Primer sequence	Reference	Amplicon length	PCR conditions
120	12Sa	F	AAACTGGGATTAGATACCCCACTAT	Kasharatal 1090	204 207 hr	049C (51) 25- 5049 (2011) 499 (4511) 729 (11)1 729 (51)
125	12Sb	R	GAGGGTGACGGGCGGTGTGT	Kocher et al., 1989	394-397 бр	$94^{\circ}C(5), 33x[94^{\circ}(30), 48^{\circ}(43), 72^{\circ}(1)], 72^{\circ}(5)$
COL	ReptCOI-F	F	TNTTMTCAACNAACCACAAAGA	No en et el 2012	((4 hr	0.49 (41) $2.5.5$ 0.49 (4.01) 4.09 (4.01) 7.29 (9.01) 1.729 (1.01)
COI	ReptCOI-R	R	ACTTCTGGRTGKCCAAARAATCA	Nagy et al., 2012	664 bp	94° (4), $30x$ [94° (40°), 49° (40°), 72° (80°)], 72° (10°)
	FU-F	F	TTTGGTTCKGTCTACAAGGCTAC		204 hr	0.49 (5) 25. 10.49 (2011) 529 (4511) 729 (11) 729 (10)
c-mos	FU-R	R	AGGGAACATCCAAAGTCTCCAAT	Comble et al. 2009	394 Up	94 (5), 35x [94 (50), 35 (45), 72 (1)], 72 (10)
	PY1-F	F	CCCTGAGTTTGGATGCTGTACTT	Gamble et al., 2008	410 hr	0.40 (50) 25 0.40 (2010) 520 (4510) 720 (101) 720 (100)
KAG2	PY1-R	R	AACTGCCTRTTGTCCCCTGGTAT		410 bp	94° (3), 33x [94° (30°), 33° (43°), 72° (1)], 72° (10)

Gamble, T., Bauer, A. M., Greenbaum, E. & Jackman, T. R. 2008. Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. *Journal of Biogeography*, *35*, 88-104.

Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Vilablanca, F.X. & Wilson, A.C., 1998. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. *Proceeding of the National Academy of Sciences*, *86*, 6196-6200.

Nagy, Z.T., Sonet, G., Glaw, F. & Vences, M., 2012. First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. *PLoS One*, *7*, e34506.

Table S2. Samples used in this study including information on voucher, country of origin, GPS coordinates (datum WGS84), and GenBank accession numbers for the two mitochondrial and two nuclear genes. Accession numbers of sequences generated for this study are highlighted in bold. Accession numbers of COI sequences downloaded from the BOLD database (<u>https://boldsystems.org/</u>) are indicated by italics. Taxon names correspond to changes proposed in this study.

Species	Voucher code	Tissue sample	Country	Latitude	Longitude	12S	COI	RAG2	cmos
Agamura persica		JIR456	Iran	33.2596169	51.8064119	PP377711	PP375999		PP353840
Agamura persica		ZMMU-R-11769-1	Iran	27.07	60.25		ABLRP227-07		
Agamura persica		RuHF-NR-326a	Iran	27.31	60.4		ABLRP284-07		
Agamura persica		RAN-814	Iran	33.333	51.717		ABLRP470-07		
Agamura persica		ZMMU RAN-732	Iran	31.13	56.84		NPLRP390-08		
Agamura persica		ZMMU RAN-625	Iran	32.54	51.73		NPLRP412-08		
Bunopus crassicauda		R/IRA/1193	Iran	32.7	55.3666667	EU589154			
Bunopus crassicauda		ERP3738	Iran	34.05	51.6		KX893096		
Bunopus crassicauda		ERP3737	Iran	34.05	51.6		KX893094		
Bunopus crassicauda		ERP3736	Iran	34.05	51.6		KX893093		
Bunopus crassicauda		ERP2088	Iran	29.45	55.516667		KX893102		
Bunopus crassicauda		ERP2062	Iran	30.233333	54.233333		KX893084		
Bunopus crassicauda		ERP2058	Iran	30.233333	54.233333		KX893083		
Bunopus crassicauda		ERP2057	Iran	30.916667	53.45		KX893079		
Bunopus crassicauda		ERP2053	Iran	30.916667	53.45		KX893081		
Bunopus crassicauda		ERP2052	Iran	30.916667	53.45		KX893080		
Bunopus crassicauda		ERP2028	Iran	31.15	52.533333		KX893074		
Bunopus crassicauda		ERP2000	Iran	31.15	52.533333		KX893073		
Bunopus crassicauda		ERP1934	Iran	32.033333	54.2		KX893104		
Bunopus crassicauda		ERP1885	Iran	36.783333	57.583333		KX893087		
Bunopus crassicauda		ERP1586	Iran	34.716667	52.6		KX893091		
Bunopus crassicauda		ERP1584	Iran	34.716667	52.6		KX893089		
Bunopus crassicauda		ERP344	Iran	36.783333	57.583333		KX893116		
Bunopus crassicauda	MVZ:Herp:234331	MVZ234331	Iran	35.0784	51.787328	PP377696	PP375984	PP353936	PP353857
Bunopus crassicauda	MVZ:Herp:245955	MVZ245955	Iran	34.7665	52.174667	PP377697	PP375985	PP353937	PP353858
Bunopus crassicauda		ZMMU-R-11893-1	Iran				ABLRP223-07		
Bunopus crassicauda		ZMMU-R-11893-2	Iran				ABLRP224-07		
Bunopus crassicauda		RAN-245	Iran	34.717	58.8		ABLRP472-07		
Bunopus orientalis	DJ7839	DJ7839	Pakistan	31.26079	72.03972	PP377707	PP375995	PP353944	PP353853
Bunopus orientalis	DJ7840	DJ7840	Pakistan	31.26079	72.03972	PP377708	PP375996	PP353945	PP353851
Bunopus orientalis	DJ7841	DJ7841	Pakistan	31.26079	72.03972	PP377709	PP375997		PP353854
Bunopus orientalis		A.M.Bauer08(A)	India	26.830185	70.506283	DQ852715			DQ852730
Bunopus orientalis	DJ9513	DJ9513	Pakistan	32.17	70.92	PP377710	PP375998	PP353946	PP353852
Bunopus orientalis		ZMMU-R-11282-3	Pakistan				ABLRP217-07		
Bunopus sp. 1		ZMMU-R-11737-1	Iran	34.31	58.41		ABLRP220-07		
Bunopus sp. 1		R/IRA/1044	Iran	34.866667	58.866667	EU589158			
Bunopus sp. 1	NMP6V 76754/2	T34	Iran	34.969722	58.89556	PP377712	PP376000	PP353947	PP353855
Bunopus sp. 1		ERP1920	Iran	32.5	58.9		KX879649		

Species	Voucher code	Tissue sample	Country	Latitude	Longitude	12S	COI	RAG2	cmos
Bunopus sp. 1		ERP1918	Iran	32.5	58.9		KX879648		
Bunopus sp. 1		ERP1872	Iran	34.166667	60.3		KX879663		
Bunopus sp. 1		ERP1869	Iran	34.166667	60.3		KX879662		
Bunopus sp. 1		ERP1056	Iran	35.366667	60.7		KX889145		
Bunopus sp. 1		ERP1055	Iran	35.366667	60.7		KX889144		
Bunopus sp. 1		ERP780	Iran	33.816667	58.316667		KX879657		
Bunopus sp. 1		ERP779	Iran	33.816667	58.316667		KX879659		
Bunopus sp. 1		ERP686	Iran	34.3	56.9		KX879655		
Bunopus sp. 1		ERP684	Iran	34.3	56.9		KX879654		
Bunopus sp. 2		ERP2095	Iran	30.433333	57.7		KX889148		
Bunopus sp. 2		ERP2093	Iran	30.433333	57.7		KX889149		
Bunopus sp. 2		ERP2092	Iran	30.433333	57.7		KX889150		
Bunopus sp. 3	BEV.10889	BEV.T3750	Jordan	31.761	36.756	PP377713	PP376001	PP353948	PP353900
Bunopus sp. 3		J27	Jordan	31.583	37.25	KT302094		KT302144	KT302127
Bunopus sp. 3	NMP6V 76757/1	JOR_080	Jordan	31.8295	36.80722	PP377714	PP376002	PP353949	PP353901
Bunopus sp. 3		R/IRA/1160	Iran	29.633333	50.433333	EU589156			
Bunopus sp. 3		REPT/SUR/347	Syria			EU589157			
Bunopus sp. 3		SUR 084	Syria	35.311307	40.130929	EU589155			
Bunopus sp. 3	NMP6V 76759/1	T29	Iran	29.633333	50.43333	PP377715		PP353950	PP353880
Bunopus sp. 3	NMP6V 76759/2	T30	Iran	29.633333	50.43333	PP377716	PP376003		
Bunopus sp. 3	NMP6V 76759/3	T31	Iran	29.633333	50.43333	KT302095		KT302145	KT302128
Bunopus sp. 3	ZFMK92881	ZFMK92881	Jordan	31.584206	37.211114	PP377717	PP376004	PP353951	PP353902
Bunopus sp. 3	ZFMK92882	ZFMK92882	Jordan	31.584206	37.211114	PP377718	PP376005	PP353952	PP353903
Bunopus sp. 3		RUZM55	Iran	34.5	45.583333		KX889160		
Bunopus sp. 3		RUZM51	Iran	30.8	49.555557		KX893123		
Bunopus sp. 3		RUZM50	Iran	30.8	49.555557		KX889138		
Bunopus sp. 3		RUZM44	Iran				KX879668		
Bunopus sp. 3		RUZM41	Iran				KX893121		
Bunopus sp. 3		RUZM40	Iran				KX893122		
Bunopus sp. 3		ERP1767	Iran	27.25	52.85		KX889163		
Bunopus sp. 3		ERP1765	Iran	27.25	52.85		KX889161		
Bunopus sp. 3		ERP1189	Iran	28.916667	51		KX879669		
Bunopus sp. 3		ERP1190	Iran	28.916667	51		KX879670		
Bunopus sp. 3		ERP1175	Iran	31.283333	49.233333		KX893120		
Bunopus sp. 3		ERP1173	Iran	31.283333	49.233333		KX893119		
Bunopus sp. 3		ZMMU RAN-967a	Iran	34.483	45.65		NPLRP068-08		
Bunopus sp. 3		ZMMU RAN-967b	Iran	34.483	45.65		NPLRP069-08		
Bunopus sp. 3		ZMMU RAN-1012	Iran	32.567	47.55		NPLRP070-08		
Bunopus sp. 3		ZMMU RAN-1013	Iran	32.567	47.55		NPLRP071-08		
Bunopus sp. 3		ZMMU RAN-1103a	Iran	31.733	48.133		NPLRP073-08		
Bunopus sp. 3		ZMMU RAN-1103b	Iran	31.733	48.133		NPLRP074-08		
Bunopus sp. 4		9016	Kuwait	29.373274	47.592202	EU589160			
Bunopus sp. 4	NMP 74269/1	OM2010_26	Oman	23.021328	57.33448	PP377765			
Bunopus sp. 4		AO38	Oman	22.76444	57.60306	PP377719	PP376006	PP353953	PP353860
Bunopus sp. 4	BEV.10048	BEV.T1470	Kuwait	29.3213	47.868	PP377720			

Species	Voucher code	Tissue sample	Country	Latitude	Longitude	12S	COI	RAG2	cmos
Bunopus sp. 4	BEV.10049	BEV.T1471	Kuwait	29.3213	47.868	PP377721			
Bunopus sp. 4	BEV.10050	BEV.T1472	Kuwait	29.3213	47.868	PP377722			
Bunopus sp. 4	BEV.10051	BEV.T1473	Kuwait	29.4432	47.742	PP377723			
Bunopus sp. 4	BEV.10068	BEV.T1490	Kuwait	29.9632	47.6233	PP377724		PP353954	PP353885
Bunopus sp. 4	BEV.10132	BEV.T2447	Kuwait	29.9437	47.7515	PP377725		PP353955	PP353868
Bunopus sp. 4	BEV.10197	BEV.T2983	Israel	29.6546	34.9862		PP376007	PP353926	PP353921
Bunopus sp. 4	BEV.13519	BEV.T9239	Kuwait	29.5561	47.7095	PP377727	PP376008		
Bunopus sp. 4	BEV.13520	BEV.T9240	Kuwait	29.3675	46.953	PP377728			
Bunopus sp. 4	BEV.14669	BEV.T11382	Kuwait	28.65761	48.37579	PP377729			
Bunopus sp. 4	BEV.15241	BEV.T12592	Kuwait	28.59522	48.39158	PP377731	PP376010	PP353957	PP353869
Bunopus sp. 4		CN10672	Oman	17.84933	54.00504	PP377747			
Bunopus sp. 4		CN10787	Oman	22.49475	58.68279	PP377748			
Bunopus sp. 4	IBE CN11181	CN11181	Saudi Arabia			PP377749		PP353968	PP353870
Bunopus sp. 4	IBE CN3263	CN3263	Oman	22.95566	56.14033	PP377736	PP376015	PP353962	
Bunopus sp. 4	IBE CN3560	CN3560	Oman	20.8069	58.32866	PP377737	PP376016	PP353963	PP353862
Bunopus sp. 4	IBE CN3647	CN3647	Oman	22.24226	58.26999	PP377738	PP376017	PP353964	PP353863
Bunopus sp. 4		CN3687	Oman	22.24226	58.26999	PP377739	PP376018	PP353965	PP353865
Bunopus sp. 4		CN4049	Oman	22.30873	59.22104	PP377740			
Bunopus sp. 4	IBE CN4082	CN4082	Oman	22.30873	59.22104	PP377741	PP376019	PP353928	PP353864
Bunopus sp. 4	IBE CN4245	CN4245	Oman	18.11348	53.22923	PP377742	PP376020	PP353966	PP353906
Bunopus sp. 4		CN703	Oman	22.3744	56.40202	PP377733	PP376012	PP353959	PP353904
Bunopus sp. 4	IBE CN7082	CN7082	Oman	18.45987	53.0983	PP377743			
Bunopus sp. 4		CN7755	Oman	19.17521	54.49364	PP377744	PP376021	PP353967	PP353907
Bunopus sp. 4		CN7798	Oman	19.5195	56.11712	PP377745	PP376022	PP353929	PP353859
Bunopus sp. 4	IBE CN8018	CN8018	Oman	18.7833	54.99401	PP377746	PP376023	PP353930	PP353908
Bunopus sp. 4		CN819	UAE	24.99638	55.66103	PP377734	PP376013	PP353960	PP353905
Bunopus sp. 4		CN828	Oman	20.80809	58.32884	PP377735	PP376014	PP353961	PP353861
Bunopus sp. 4	NMP6V 76768	CN15012	Saudi Arabia	20.82676	45.81416	PP377750			
Bunopus sp. 4		CN15016	Saudi Arabia	20.82676	45.81416	PP377751	PP376024		PP353871
Bunopus sp. 4	NMP6V 76766	CN15154	Saudi Arabia	22.310637	41.754493		PP376025		PP353867
Bunopus sp. 4	NMP6V 76767/1	CN15735	Saudi Arabia	25.45933	46.56276	PP377752		PP353969	PP353886
Bunopus sp. 4	NMP 6V 76765	CN15748	Saudi Arabia	24.542718	46.30234	PP377753	PP376026	PP353970	PP353872
Bunopus sp. 4		CN15760	Saudi Arabia	25.147162	47.559819	PP377754		PP353971	PP353873
Bunopus sp. 4		CN15761	Saudi Arabia	25.147162	47.559819	PP377755	PP376027	PP353972	PP353887
Bunopus sp. 4	NMP6V 76764/2	CN15774	Saudi Arabia	25.147162	47.559819	PP377756	PP376028	PP353931	PP353888
Bunopus sp. 4	NMP6V 76764/1	CN15775	Saudi Arabia	25.147162	47.559819	PP377757	PP376029	PP353973	PP353884
Bunopus sp. 4	NMP6V 76767/2	CN15778	Saudi Arabia	25.45933	46.56276	PP377758	PP376030	PP353974	PP353889
Bunopus sp. 4	NMP6V 76760	JEM_40	Yemen	15.4	45.269167	PP377759			
Bunopus sp. 4	NMP6V 76755	JOR_030	Jordan	29.42565	34.97565	PP377760	PP376031	PP353975	MG990766
Bunopus sp. 4	NMP6V 76756	JOR_031	Jordan	29.466	35.44563	PP377761	PP376032	PP353976	PP353909
Bunopus sp. 4		JORD05	Jordan	29.3159531	36.0023778	PP377762	PP376033	PP353977	PP353910
Bunopus sp. 4		JORD06	Jordan	29.3159531	36.0023778	PP377763	PP376034		PP353911
Bunopus sp. 4	SMNHTAU-R.15249	R.15249	Israel	29.797	35.012	PP377766	PP376036	PP353932	PP353912
Bunopus sp. 4	SMNHTAU-R.18329	R.18329	Israel	29.94	35.068	PP377767	PP376037	PP353979	PP353913
Bunopus sp. 4	SMNHTAU-R.18330	R.18330	Israel	29.94	35.068		PP376038	PP353980	PP353922

Species	Voucher code	Tissue sample	Country	Latitude	Longitude	128	COI	RAG2	cmos
Bunopus sp. 4	SMNHTAU-R.18332	R.18332	Israel	29.94	35.068	PP377768	PP376039	PP353981	PP353914
Bunopus sp. 4	IBE S10015	S10015	Saudi Arabia	25.26806	46.62366	PP377772	PP376041	PP353984	PP353890
Bunopus sp. 4	IBE S10027	S10027	Saudi Arabia	26.10437	44.58867	PP377773	PP376042	PP353985	PP353893
Bunopus sp. 4	IBE S10090	S10090	Saudi Arabia	26.10437	44.58867	PP377774	PP376043	PP353986	PP353879
Bunopus sp. 4	IBE S10098	S10098	Saudi Arabia	26.45661	37.9359	PP377775	PP376044	PP353987	PP353915
Bunopus sp. 4	IBE S10137	S10137	Saudi Arabia	25.32252	46.53951	PP377776			
Bunopus sp. 4	IBE S10225	S10225	Saudi Arabia	26.08708	44.6517	PP377777	PP376045	PP353988	PP353874
Bunopus sp. 4	IBE S10269	S10269	Saudi Arabia	25.32252	46.53951	PP377778			
Bunopus sp. 4	IBE S10329	S10329	Saudi Arabia	26.8696	40.06326	PP377779	PP376046	PP353989	PP353891
Bunopus sp. 4	IBE S10369	S10369	Saudi Arabia	25.26806	46.62366	PP377780			
Bunopus sp. 4	IBE S10403	S10403	Saudi Arabia	21.25904	40.79568	PP377781	PP376047	PP353990	PP353875
Bunopus sp. 4		S3767	Oman	19.743058	55.1478	PP377769	PP376040	PP353933	PP353866
Bunopus sp. 4	IBE S7823	S7823	Oman	20.42776	56.74081	PP377770		PP353982	PP353919
Bunopus sp. 4	IBE S8076	S8076	Oman	19.16855	57.65657	PP377771		PP353983	PP353920
Bunopus sp. 4		SA01	Saudi Arabia	24.6308139	39.3202333	PP377782	PP376048		PP353892
Bunopus sp. 4		SA02	Saudi Arabia	24.6308139	39.3202333	PP377783	PP376049		PP353899
Bunopus sp. 4		SPM002890	UAE	25.29167	55.58	PP377784	PP376050	PP353991	PP353894
Bunopus sp. 4		BEV.T12591	Kuwait	28.59728	48.27574	PP377730	PP376009	PP353927	
Bunopus sp. 4		BEV.T12593	Kuwait	29.4736	47.7781	PP377732	PP376011	PP353958	PP353877
Bunopus sp. 4		BEV.T2452	Kuwait	29.9437	47.7515	PP377726		PP353956	PP353878
Bunopus sp. 4	NMP6V 76758	T28	UAE	24.130216	55.80232		PP376051		
Bunopus sp. 4	NMP6V 76761	UAE1DK	UAE	24.78071	54.71581	PP377785			
Bunopus sp. 4		UAE2DK	UAE	24.78071	54.71581	PP377786			
Bunopus sp. 4	ZFMK87215	ZFMK87215	Saudi Arabia	22.4	41.74	PP377787	PP376052		
Bunopus sp. 4	ZFMK87217	ZFMK87217	Saudi Arabia	22.4	41.74	PP377788	PP376053	PP353992	PP353876
Bunopus sp. 4	ZFMK92883	ZFMK92883	Jordan	29.903897	35.406139	PP377789	PP376054	PP353993	PP353916
Bunopus sp. 4	ZFMK92884	ZFMK92884	Jordan	29.903897	35.406139	PP377790	PP376055	PP353994	PP353917
Bunopus sp. 4	ZFMK92885	ZFMK92885	Jordan	29.903897	35.406139	PP377791	PP376056	PP353995	PP353918
Bunopus sp. 4		CN3796	Oman	21.3333333	58.5333333		KX889134		
Bunopus sp. 4		CAS250929	Oman	22.4781	58.7767		KX889136		
Bunopus sp. 4		CAS250876	UAE	25.616667	56.05		KX889155		
Bunopus sp. 4		CAS228738	UAE	25.2701667	55.6966667		KX889154		
Bunopus sp. 4	MVZ:Herp:236485	MVZ236485	Yemen	15.443833	45.311	PP377764	PP376035	PP353978	PP353881
Bunopus sp. 4	·	AMC005_1	Qatar	25.724	50.995		LIZ008-15		
Bunopus sp. 5		ZMMU-R-11738-1	Iran	30.34	61.23		ABLRP221-07		
Bunopus sp. 5	MVZ:Herp:250430	MVZ250430	Pakistan	29.800667	66.902333	PP377792	PP376057	PP353996	PP353856
Bunopus sp. 5	·	ERP 1097	Iran	31.1166667	61.7333333		KX889153		
Bunopus tuberculatus sensu stricto		RuHF-NR-332	Iran	27.08	60.15		ABLRP222-07		
Bunopus tuberculatus sensu stricto		ZMMU RAN-1186	Iran	28.317	57.9		NPLRP072-08		
Bunopus tuberculatus sensu stricto		ZMMU RAN-1166	Iran	26.883	57.1		NPLRP075-08		
Bunopus tuberculatus sensu stricto		9014	Iran	25.768707	60.865907	EU589159			
Bunopus tuberculatus sensu stricto		MVZ234334	Iran	25.45	61.25		KX879651		
Bunopus tuberculatus sensu stricto		MVZ234355	Iran	25.45	61.25		KX879650		
Bunopus tuberculatus sensu stricto		MVZ234352	Iran	26.933333	56.4		KX889156		
Bunopus tuberculatus sensu stricto		ERP3956	Iran	27.2	60.45		KY077673		

Species	Voucher code	Tissue sample	Country	Latitude	Longitude	12S	COI	RAG2	cmos
Bunopus tuberculatus sensu stricto		ERP3955	Iran	27.2	60.45		KY077672		
Bunopus tuberculatus sensu stricto		ERP2104	Iran	27.2	60.45		KY077671		
Bunopus tuberculatus sensu stricto		ERP2102	Iran	27.2	60.45		KX077670		
Bunopus tuberculatus sensu stricto		ERP1806	Iran	27.75	55.1		KX889157		
Bunopus tuberculatus sensu stricto	MVZ:Herp:234336	MVZ234336	Iran	25.270333	60.755333	PP377794	PP376059	PP353997	
Bunopus tuberculatus sensu stricto	MVZ:Herp:234337	MVZ234337	Iran	25.270333	60.755333	PP377795	PP376060	PP353998	PP353895
Bunopus tuberculatus sensu stricto	MVZ:Herp:234347	MVZ234347	Iran	26.963333	60.145833	PP377796	PP376061	PP353999	PP353897
Bunopus tuberculatus sensu stricto	MVZ:Herp:234348	MVZ234348	Iran	26.898	60.168	PP377797	PP376062	PP353935	PP353898
Bunopus tuberculatus sensu stricto	MVZ:Herp:234350	MVZ234350	Iran	26.944833	56.240833	PP377798	PP376063	PP354000	PP353882
Bunopus tuberculatus sensu stricto	MVZ:Herp:234351	MVZ234351	Iran	26.944833	56.240833	PP377799	PP376064	PP354001	PP353896
Bunopus tuberculatus sensu stricto	MVZ:Herp:234356	MVZ234356	Iran	25.270333	60.755333	PP377800	PP376065	PP354002	PP353883
Bunopus tuberculatus sensu stricto		ZMMU RAN-1167	Iran	26.883	57.1		NPLRP076-08		
Bunopus tuberculatus sensu stricto		ZMMU RAN-1168	Iran	26.883	57.1		NPLRP077-08		
Crossobamon eversmanni		DJ5751	Tajikistan	37.10207	68.22523		PP375987	PP353939	PP353847
Crossobamon eversmanni	DJ5755	DJ5755	Tajikistan	37.10207	68.22523	PP377699	PP375988		PP353841
Crossobamon eversmanni		DJ5765	Tajikistan	37.10207	68.22523	PP377700	PP375989	PP353940	PP353843
Crossobamon eversmanni		ERP1062	Iran	34.5333333	60.4333333		KX893113		
Crossobamon eversmanni		ERP1063	Iran	34.5333333	60.4333333		KX893114		
Crossobamon eversmanni		DJ8898	Uzbekistan	37.81	67.2	PP377701	PP375990	PP353923	PP353848
Crossobamon eversmanni		DJ8899	Uzbekistan	37.81	67.2	PP377702	PP375991	PP353924	PP353849
Crossobamon eversmanni		DJ8908	Uzbekistan	37.38	67.28	PP377703		PP353925	PP353842
Crossobamon eversmanni		DJ8909	Uzbekistan	37.38	67.28	PP377704	PP375992	PP353941	PP353844
Crossobamon eversmanni		DJ8935	Uzbekistan	37.56	67.26	PP377705	PP375993	PP353942	PP353845
Crossobamon eversmanni		DJ8936	Uzbekistan	37.56	67.26	PP377706	PP375994	PP353943	PP353850
Crossobamon eversmanni	CAS232100	CAS232100	Pakistan	29.4695	65.9808333	PP377701	PP375990	PP353923	PP353848
Crossobamon eversmanni		ZMMU-R-12086-1	Uzbekistan	41.21	64.22		ABLRP219-07		
Crossobamon eversmanni		ZMMU R-12916	Kazakhstan	44	69		NPLRP401-08		
Crossobamon eversmanni		RuHF-NR-259a	Iran	34.22	58.26		ABLRP287-07		
Trachydactylus spatalurus		CN15960	Yemen	13.882402	45.869709	PP377793	PP376058	PP353934	PP353839

Table S3. Results of the biogeographic reconstructions using BioGeoBEARS showing statistics for the competing models.

Model	k	AICc	Delta AICc	AICc weights
DEC	2	21.28	0.569	0.427
DIVALIKE	2	20.71	0	0.568
BAYAREA	2	30.31	9.603	0.005