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Abstract

Background: Genetic architecture of a species is a result of historical changes in population size and extent of
distribution related to climatic and environmental factors and contemporary processes of dispersal and gene flow.
Population-size and range contractions, expansions and shifts have a substantial effect on genetic diversity and
intraspecific divergence, which is further shaped by gene-flow limiting barriers. The Balkans, as one of the most
important sources of European biodiversity, is a region where many temperate species persisted during the
Pleistocene glaciations and where high topographic heterogeneity offers suitable conditions for local adaptations of
populations. In this study, we investigated the phylogeographical patterns and demographic histories of four species
of semifossorial slow-worm lizards (genus Anguis) present in the Balkan Peninsula, and tested the relationship between
genetic diversity and topographic heterogeneity of the inhabited ranges.

Results: We inferred phylogenetic relationships, compared genetic structure and historical demography of slow worms
using nucleotide sequence variation of mitochondrial DNA. Four Anguis species with mostly parapatric distributions
occur in the Balkan Peninsula. They show different levels of genetic diversity. A signature of population growth was
detected in all four species but with various courses in particular populations. We found a strong correlation between
genetic diversity of slow-worm populations and topographic ruggedness of the ranges (mountain systems) they
inhabit. Areas with more rugged terrain harbour higher genetic diversity.

Conclusions: Phylogeographical pattern of the genus Anguis in the Balkans is concordant with the refugia-
within-refugia model previously proposed for both several other taxa in the region and other main European
Peninsulas. While slow-worm populations from the southern refugia mostly have restricted distributions and
have not dispersed much from their refugial areas, populations from the extra-Mediterranean refugia in northern parts
of the Balkans have colonized vast areas of eastern, central, and western Europe. Besides climatic historical events,
the heterogeneous topography of the Balkans has also played an important role in shaping genetic diversity of
slow worms.
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Background
Diversity of European biota has been strongly influ-
enced by global climatic and environmental changes in
the Quaternary. Toward the end of the Pleistocene, re-
peated climatic oscillations led to extinctions of many
phylogenetic lineages from vast northern areas during
glacial periods followed by re-colonisations during in-
terglacials [1–3]. Many plant and animal lineages sur-
vived cold and dry glacials in relatively stable and
hospitable environments. In Europe these were located
in three Mediterranean peninsulas: Iberian, Italian, and
Balkan. This general biogeographical model has been
expanded to a more complex view acknowledging long-
term persistence of cold-tolerant species in central and
northern Europe during glacials and survival in mul-
tiple refugia located within the Mediterranean penin-
sulas [4, 5]. Demographic stability of populations in
southern refugia enabled them to diverge, which has
resulted in high diversity in all three main refugial
regions. In contrast, northern populations established
during re-colonization are generally characterized by
lower taxonomic and genetic diversity.
In comparison to the Iberian and Italian peninsulas,

the Balkans has remained much less studied in terms
of the biogeographical history of the species distributed
there, although it is richer both in biodiversity and
paleoendemics [6–8]. The Balkan Peninsula is not
isolated by one extended mountain range such as the
Pyrenees of the Iberian and the Alps of the Italian
Peninsula, and so there are fewer dispersal barriers to
the north. This allowed postglacial expansion of popula-
tions from the Balkan refugia to central and northern
Europe [1, 5, 9]. On the other hand, the Balkan Peninsula
is a region with high topographic and climatic hetero-
geneity, showing a strong contrast between the eastern/
western and northern/southern parts. In the east and
north, the surface is formed by plains or plateaus and the
mountain slopes are generally gentle, while in the west and
south the Dinarides and Hellenides rise steeply from the
coastal strip [10]. Each of the Balkan mountain chains also
has a different tectonic and sedimentary history, and while
they all underwent complex folding and faulting in the
process of the Alpine orogenesis, the intensity was different
[11]. All this geographical variation offers suitable condi-
tions for local adaptations of populations, which could
promote divergence and subsequent diversification [12, 13].
We, and others [14–17] have been studying the evo-

lutionary history of legless lizards of the genus Anguis
(family Anguidae) within its Western Palearctic range.
This genus comprises five species, four of which occur
in the Balkans [14, 15]. While Anguis cephallonica
Werner, 1894 and A. graeca Bedriaga, 1881 are Balkan
endemics with rather restricted distribution in the
south of the peninsula, ranges of A. fragilis Linnaeus,
1758 and A. colchica (Nordmann, 1840) are at the contin-
ental scale and cover vast areas of Europe and western
Asia [14, 17–19]. Considering the semifossorial lifestyle
and high site tenacity [20, 21], one might expect restricted
occurrence of slow worms. However, distribution of slow
worms in the Balkan Peninsula seems to be more or less
continuous with gaps probably only in agricultural regions
and extremely high altitudes [19, 22, 23]. Nevertheless, de-
tails of the species ranges within the Balkans, contact
zones of multiple species, and detailed intraspecific gen-
etic structure in respect to geography and ecology still re-
main widely unknown.
In this study we collected and analysed data originat-

ing from the Balkan slow-worm populations with the
aim to i) provide a detailed picture of distribution; ii)
infer historical relationships of populations and describe
genetic diversity; iii) reconstruct biogeographical histor-
ies of the Balkan slow-worm populations during the
Quaternary. Finally, we tested iv) whether the genetic di-
versity observed in the Balkan slow worms is driven by
specifics of topography. Dispersal barriers would most
likely coincide with the extensive and variously rugged
mountain ranges of the Balkan Peninsula, thus we ex-
pected the slow-worm genetic diversity to be correlated
with topographic variation of this region.

Methods
Sampling
Since the Balkan Peninsula represents an important evo-
lutionary centre of the genus Anguis, we devoted this
study to slow-worm populations from this region. Our
sampling strategy focused on equally representing the
whole Balkan region as well as all four Balkan species.
Sampling effort also took into account that these species
vary in distribution ranges and inter-specific genetic
diversification and may have low population densities in
some areas. Tissue samples were obtained mainly from
road-killed individuals or alternatively from living
animals as oral swabs, blood droplets, or miniature skin
biopsies. This sampling procedure did not affect survival
of the captured animals. No experimental research was
carried out on these animals in this study. All samples
were preserved in 96 % ethanol. A portion, 732 base
pairs (bp), of the mitochondrial gene for NADH de-
hydrogenase subunit 2 (ND2) was targeted. Newly
produced nucleotide sequences were supplemented to
previously published sequences from the Balkans [14–17]
to complete a total of 231 specimens from 187 localities.
Based on the mtDNA identity, we represented all four
Balkan Anguis species, namely 110 A. fragilis, 56 A. col-
chica, 49 A. graeca, 16 A. cephallonica (Fig. 1; Additional
file 1: Table S1). To put our Balkan data into a complex
phylogeographical context, we compiled an additional
dataset supplemented by all known haplotypes, including



Fig. 1 Maximum likelihood (ML) phylogenetic tree of Anguis species and their distributions in the Balkans based on a fragment of mtDNA
(ND2). Anguis veronensis (in white) occurs outside the area studied here. Numbers at nodes show Bayesian posterior probabilities and ML
bootstrap support values. Yellow lines denote contact zones between two species. Numbers correspond to the locality numbers as given
in Additional file 1: Table S1
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those from outside the Balkans, previously published by
[14, 15]: A. fragilis (f1–f15), A. colchica (c1–c12), A. graeca
(g1–g16), A. cephallonica (ce1, ce2), A. veronensis (v1–
15); and [16]: A. fragilis (AF01–AF07), A. colchica (AC01,
AC02). The resulting dataset contained 271 sequences,
excluding outgroup. Following previous works of our team
[14, 15], we used the sister genus Pseudopus as outgroup
(P. apodus thracius from Albania, Pat1, GenBank No.
FJ666589).

Laboratory procedures
Total genomic DNA was extracted using various com-
mercial kits and following respective manufacturer pro-
tocols. We amplified > 1400 bp-long portion of mtDNA
comprising the complete ND2 gene, five subsequent
transfer RNA (tRNAs) genes and the light-strand replica-
tion origin using primers (L4437n, H5934) and protocol
following [14]. We sequenced only the first half of the
amplicon using the internal reverse primer AND2inR2
[14], which was also used in PCR amplifications in cases
of samples with degraded DNA, using the same proto-
col. Alternatively, the internal reverse primer AND2inRc
[14] was used in A. cephallonica for both PCR amplifica-
tions (in degraded DNA) and sequencing. The final stretch
contained 732 bp-long fragment of ND2 after trimming the
low quality ends. The sequencing was performed by
Macrogen Inc. (Seoul, South Korea or Amsterdam,
Netherlands; http://www.macrogen.com) and new se-
quences have been deposited in GenBank under accession
numbers KX020147–KX020322 (Additional file 1: Table S1).
DNA sequence evaluation, phylogenetic analyses, and
haplotype networks
The protein-coding ND2 fragments (732 bp) were
aligned manually. No stop codons were detected when
the sequences were translated using the vertebrate
mitochondrial genetic code in the program DnaSP 5.10
[24]. The same program was used to calculate uncor-
rected p-distances among the main lineages or hap-
logroups within each taxon, and to estimate the number
of haplotypes (h), haplotype diversity (Hd), number of seg-
regating sites (S), nucleotide diversity (π), and Watterson’s
theta (θW) for each of these lineages or haplogroups.

http://www.macrogen.com
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For phylogenetic analyses we used the all-individuals
dataset supplemented by distinct published haplotypes
from outside the Balkans to obtain a complex picture
of the phylogenetic relationships within the Balkan
Peninsula and in the framework of the whole genus.
The best-fit codon-partitioning schemes and the best-
fit substitution models were selected using PartitionFin-
der v1.1.1. [25], according to the Bayesian information
criterion (BIC), separately for each dataset and meth-
odological approach (i.e. models available in the used
software). Phylogenetic trees were inferred using the
Bayesian approach (BA) and maximum likelihood (ML)
with the software MrBayes 3.2 [26] and RAxML 8.0
[27], respectively. Each codon position treated separ-
ately was selected as the best-fit partitioning scheme
for both BA and ML with the best-fit substitution
models for the BA analysis as follows: HKY +G (1st codon
position), HKY + I (2nd codon position), and HKY +G (3rd

codon position); and for the ML analysis: GTR +G in each
codon position. The ML clade support was assessed by
1,000 bootstrap pseudoreplicates. The MrBayes analysis
was set as follows: two separate runs, with four chains for
each run, 10 million generations with samples saved every
100th generation. The convergence of the two runs was
confirmed by the convergence diagnostics (average stand-
ard deviation of split frequencies, potential scale reduction
factor). First 20 % of trees were discarded as the burn-in
after inspection for stationarity of log-likelihood scores of
sampled trees in Tracer 1.6 [28] (all parameters had effect-
ive sample size > 200). Majority-rule consensus tree was
drawn from the post-burn-in samples and posterior
probabilities were calculated as the frequency of samples
recovering any particular clade.
Haplotype-network approaches can be more effective

for presentation of intraspecific evolution than the tree-
based phylogenetic approaches [29]. Therefore, we also
constructed haplotype networks for individual species
(or main clades in A. colchica) using the 95 % limit of
parsimony as implemented in TCS 1.21 [30]. To infer
possible connections to a network when cases of highly
divergent haplotypes were detected (two haplotypes in
A. graeca, and one in A. cephallonica), we also applied a
fixed connection limit at a higher number of steps allow-
ing visualization of their likely connections to the net-
works constructed under the 95 % limit of parsimony.

Demographic analyses
The past population dynamics of the main population
groups were inferred using the Bayesian coalescent-
based approach of the Bayesian skyline plots (BSPs;
[31]) as implemented in BEAST 2.1 [32]. This method
computes the effective population size (Ne) through
time directly from sampled sequences and does not re-
quire a specific a priori assumed demographic model.
Main population groups correspond to monophyletic
groups. In a single case of several basal haplogroups of
A. fragilis, the population group was defined geograph-
ically (‘Slovenian’ populations). Preliminary analyses
were run using both strict molecular clock and uncor-
related lognormal relaxed molecular clock. Since the
parameter of the standard deviation of the uncorrelated
lognormal relaxed clock was close to zero, the final
analyses were run enforcing the strict molecular clock
model. A uniform prior for the substitution rate with
the initial value 0.0065 substitution/site/lineage/Myr (as
suggested for the used mtDNA marker in anguid liz-
ards; [33]) was set as no internal calibration point was
available. Using PartitionFinder v1.1.1. [25], all codon
positions treated together as one partition and the HKY
substitution model were selected as the best-fit parti-
tioning scheme and the best-fit model, respectively, for
each population group. The final BSP analyses were run
in duplicates to check for consistency between runs,
each for at least 10 million generations (or more ac-
cording to each dataset until the effective sample size
[ESS] > 200 was achieved) and sampled every 1000 gen-
erations (or more, accordingly, to save 10,000 samples).
Convergence, ESS, stationarity, and the appropriate
number of generations to be discarded as burn-in
(10 %) were assessed using Tracer 1.6 [28]. The result-
ing BSPs were also summarized in Tracer 1.6 with the
maximum times as the median of the root height
parameter.
In addition, the mismatch distributions (MD) were

calculated as the distributions of the observed pairwise
nucleotide differences and the expected values under a
growing- or declining-population model using DnaSP
5.10 [24]. The occurrence of historical demographic
changes was assessed by the neutrality-test statistics of
the Fu’s FS [34] Tajima’s D [35], and Ramos-Onsins and
Rozas’s R2 [36] calculated in DnaSP 5.10 with the
estimation of the statistical significance using 10,000
coalescent simulations.

Genetic diversity and topographic heterogeneity
Since a more complex topography is more likely to
limit dispersal and gene flow, we hypothesized that re-
gions with higher topographic heterogeneity (terrain
ruggedness) will be inhabited by slow-worm lineages
characterized by higher genetic diversity. To test for
this relationship we performed regression analyses of
nucleotide diversity (π) with the terrain ruggedness
index (TRI). TRI is a measure of topographic hetero-
geneity calculated as a sum change in elevation between
a grid cell and its eight neighbour cells in a grid net-
work [37]. Cell TRI values are then averaged across
specific areas such as mountains. Values of TRI were
derived from digital elevation model based on the data
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from the NASA Shuttle Radar Topographic Mission
(SRTM-3; available at http://srtm.usgs.gov) with a
spatial resolution of approximately 3 arc-sec (~100 ×
100 m) with a final resample to 30 arc-sec (~1 × 1 km)
using GRASS GIS 7.1 [38]. The polygon network was
created for the selected topographic units, mountain
ranges, which respect distributions of evolutionary lineages
or haplogroups (Apuseni Mts., Carpathians, Dinarides,
Hellenides, Prealps, Peloponnese, Macedonian-Thracian
Massif, Stara Planina Mts.; Additional file 2: Table S2,
Additional file 3: Figure S1 and Additional file 4: Table S3).
Since higher genetic diversity might be expected in geo-
graphically larger areas, we controlled for the effect of the
topographic-unit size. In the multiple linear regressions,
we regressed nucleotide diversity of individual phylogen-
etic lineages/haplogroups against ‘extreme’ values of TRI
calculated for the topographic units (‘extreme’ values were
taken from the highest 25 % of data: 3rd quartile (Q3), and
median and modus of the values above Q3), and against
topographic-unit sizes (in km2). The ‘extreme’ values of
TRI were selected with the aim to preferentially study the
influence of steeper terrain, presumably posing stronger
barriers to gene flow and resulting thus in higher probabil-
ity of lineage divergence. Due to the controversy about the
biogeographical significance of the Apuseni Mts. as a sep-
arate unit within the Carpathians [39, 40], we performed
two separate analyses with samples from the Apuseni Mts.
included and excluded, respectively, within the group of
the Carpathian samples. The GIS analyses were performed
using ArcGIS 10.1 (ESRI) and the multiple linear regres-
sions were carried out using STATISTICA version 12 [41].

Results
Phylogeny, species distributions and contact zones
The maximum likelihood and Bayesian phylogenetic
analysis provided topologies concordant with previous
studies [14, 15, 17]. The southernmost species, A.
cephallonica, forms a clade with A. veronensis from the
Italian Peninsula, while the other three species (A. fra-
gilis, A. colchica, and A. graeca) form a separate clade,
in which the Balkan endemic A. graeca is in a sister
position to the eastern widespread species, A. colchica
(Fig. 1).
Anguis fragilis is distributed in the northwestern and

central parts of the Balkan Peninsula from the Julian
Alps and the southeastern Prealps, along the Dinarides
to the Macedonian-Thracian Massif, and only marginally
in the northern Hellenides (Figs. 1 and 10). Anguis
colchica is documented from the Carpathians, the
Balkanides along the Stara Planina Mts. in southeastern
Serbia and central Bulgaria, and from the Black Sea
region (Strandzha Mts.). Anguis graeca is mostly
confined to the Hellenides in the southern Balkans where
it is distributed from the northern Peloponnese, along the
Pindus Mts. and the Albanian Mts. to the southernmost
Dinaric region (southern Montenegro) and western
Macedonian-Thracian Massif (northeastern Rep. Macedonia).
Anguis cephallonica was found in the Peloponnese and
Kephallonia Island (not sampled in Zakynthos and Ithaki
islands in this study where the species was docu-
mented previously [42, 43]).
Our detailed sampling also revealed several areas

where haplotypes of different species could be found in
distances from ca. 15 to 80 km, indicating the existence
of contact zones (Fig. 1). One such contact zone be-
tween A. fragilis and A. colchica was detected in eastern
and southeastern Serbia and central-western Bulgaria
(sites 34–37, 67–68, 73–76 for A. fragilis; sites 109–111,
115–116, 117–119 for A. colchica). Three zones of
contact were further detected between A. fragilis and A.
graeca in southernmost Montenegro (sites 61 and 139;
sympatric occurrence), northwestern Rep. Macedonia
(sites 63 and 158), and in the tri-border area of Serbia,
Bulgaria and Rep. Macedonia (sites 64, 70–72, 160).
Sympatric occurrence of A. graeca and A. cephallonica
was confirmed from northern Peloponnese (sites 165,
166, 172; and 174–176).

Genetic diversity and phylogeographical patterns
The dataset built up from the Balkan specimens con-
tained 231 ingroup (Anguis) sequences, which yielded a
total of 100 haplotypes. Nucleotide diversity was higher
in the two Balkan endemics, A. graeca (π = 1.17 ±
0.11 %) and A. cephallonica (π = 0.81 ± 0.21 %), than in
the Balkan populations of the two northerly distributed
taxa, A. colchica (Incerta clade; π = 0.66 ± 0.05 %) and A.
fragilis (π = 0.34 ± 0.04 %; Table 1).
Anguis fragilis shows relatively low genetic variation,

with 34 haplotypes identified among 110 individuals
(intraspecific p-distance ≤ 1.1 %; Additional file 5: Table S4;
Fig. 2). The basal radiation was detected in the north-
west of the Balkans, in the northern Dinarides and
southeastern Prealps (sites 1–7). Haplotypes from this
basal radiation do not form a monophylum and may
be divided into three Slovenian haplogroups, which
we name in accordance to the detected distributions
as follows: North Adriatic (sites 1, 2, 7); Carniolan
(sites 5, 6); and Alpine-Pannonian (sites 3, 4). In earlier
studies, haplotypes belonging to the latter haplogroup
were also found outside the Balkans, i.e. in northeastern
Italy (haplotype f8 – [15]) and the Pannonian Plain (haplo-
types AF04, AF05 – [16]). Another haplogroup from the
basal radiation (haplotypes f14, f15 – [15]; and AF07 –
[16]) and a single haplotype (f7 [14]) conform to popula-
tions from Western Europe (Spain, France). All other A.
fragilis haplotypes cluster into one large unit that might
be divided into two geographically separated haplogroups:
the northern we hereafter name the Illyrian-Central

http://srtm.usgs.gov


Table 1 Summary of genetic polymorphism and results of neutrality tests for the Balkan populations of four species of the genus
Anguis

Species/clade/lineage/haplogroup n h S π ± SD (%) hd ± SD θW ± SD (%) FS P [FS] R2 P [R2] D P [D]

A. cephallonica 16 13 33 0.81 ± 0.21 0.980 ± 0.030 1.36 ± 0.53 – – – – – –

Mani lineage 1 1 – – – – – – – – –

Widespread lineage 15 12 19 0.59 ± 0.08 0.971 ± 0.033 0.8 0 ± 0.33 –5.578 0.003 0.0824 0.005 –1.087 0.139

A. colchica 56 24 57 2.00 ± 0.22 0.894 ± 0.033 1.70 ± 0.50 –

PONTIC clade 13 8 10 0.29 ± 0.07 0.885 ± 0.070 0.44 ± 0.21 –3.410 0.011 0.0993 0.013 –1.357 0.083

INCERTA clade 43 16 27 0.66 ± 0.05 0.829 ± 0.052 0.85 ± 0.29 –2.632 0.175 0.0837 0.218 –0.753 0.256

Stara-Planina lineage 22 5 5 0.09 ± 0.03 0.407 ± 0.128 0.19 ± 0.10 –2.263 0.017 0.0769 0.001 –1.631 0.017

Banatian lineage 3 3 4 0.36 ± 0.11 1.000 ± 0.272 0.36 ± 0.26 – – – – – –

Carpathian lineage 18 8 12 0.47 ± 0.04 0.889 ± 0.042 0.48 ± 0.21 –0.736 0.356 0.1320 0.0441 –0.082 0.510

A. fragilis 110 34 49 0.34 ± 0.04 0.851 ± 0.028 1.28 ± 0.35 – – – – – –

Carniolan 2 2 2 0.27 ± 0.14 1.000 ± 0.500 0.27 ± 0.24 – – – – – –

Alpine-Pannonian 2 1 – – – – – – – – – –

North Adriatic 3 2 1 0.09 ± 0.04 0.667 ± 0.314 0.09 ± 0.09 – – – – – –

‘Slovenian’ haplogroups together 7 5 11 0.68 ± 0.10 0.905 ± 0.103 0.62 ± 0.32 0.276 0.507 0.1976 0.506 0.557 0.722

Illyrian-Central European 71 22 29 0.21 ± 0.03 0.706 ± 0.059 0.82 ± 0.26 – – – – – –

South Balkan 32 7 6 0.13 ± 0.02 0.679 ± 0.065 0.20 ± 0.10 –2.853 0.025 0.0797 0.089 –1.034 0.174

ICE ± SB 103 29 36 0.25 ± 0.02 0.831 ± 0.031 0.95 ± 0.27 –26.331 < 0.001 0.0253 0.001 –2.257 0.001

A. graeca 49 29 73 1.17 ± 0.11 0.964 ± 0.013 2.24 ± 0.66 –9.390 0.010 0.0522 0.013 –1.703 0.023

graeca XII 1 1 – – – – – – – – – –

graeca XI 5 1 – – – – – – – – – –

graeca X 1 1 – – – – – – – – –

graeca IX 1 1 – – – – – – – – – –

graeca VIII 1 1 – – – – – – – – – –

graeca VII 1 1 – – – – – – – – – –

graeca VI 1 1 – – – – – – – – – –

graeca V 14 8 11 0.37 ± 0.08 0.901 ± 0.058 0.47 ± 0.22 – – – – – –

graeca IV 4 3 5 0.36 ± 0.12 0.833 ± 0.222 0.37 ± 0.24 – – – – – –

graeca III 1 1 – – – – – – – – – –

graeca II 2 2 3 0.41 ± 0.21 1.000 ± 0.500 0.41 ± 0.34 – – – – – –

graeca I 15 6 9 0.27 ± 0.05 0.790 ± 0.079 0.38 ± 0.18 – – – – – –

KJ634800 1 1 – – – – – – – – – –

KJ634801 1 1 – – – – – – – – – –

Underlined populations were included in the demographic analyses. Sample size (n), number of haplotypes (h), number of polymorphic sites (S), nucleotide
diversity (π), haplotype diversity (hd), Watterson’s theta per site (θW), Fu’s FS statistics (FS), Ramos-Onsins and Rozas’s R2 statistics (R2), Tajima’s D statistics (D), and
their probability values (P) are given. Values marked in bold are statistically significant. SD = standard deviation
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European haplogroup (ICE), and the southern one (the
South Balkan haplogroup, SB). Haplotypes from the
ICE haplogroup were also detected in Central Europe
and southern Great Britain (haplotypes f1–f3, f12, f13 –
[14, 15]; AF01–AF03 – [16]). The ICE haplogroup is
paraphyletic in respect to the SB haplogroup. Neverthe-
less, the SB haplogroup is geographically well defined,
confined to the Macedonian-Thracian Massif and only
slightly penetrating to the northern Hellenides (Figs. 2b
and 10). The ICE haplogroup is distributed along the
Dinarides and surrounding lowland areas.
In Anguis colchica, a deep intraspecific divergence

(4.3 % p-distance; Additional file 5: Table S4) was found
separating two clades of a different geographical origin
(Fig. 3a). One clade is widespread and corresponds to
the subspecies A. colchica incerta [14], hereafter named
the Incerta clade, while the second clade was detected in
the Black Sea coastal area, therefore named the Pontic



Fig. 2 Anguis fragilis, (a) maximum likelihood (ML) phylogeny, (b) geographical distributions, and (c) parsimony haplotype network of the main
haplogroups in the Balkans. Numbers at nodes in the tree represent Bayesian posterior probabilities (pp) and ML bootstrap support values (pp
below 0.50 and bootstrap values below 50 are not shown). Locality numbers (in parentheses) follow sample IDs and correspond to the numbers
in Additional file 1: Table S1. White circles in the network represent extralimital haplotypes as detected in previous studies (Gvoždík et al. [14, 15];
Szabó & Vörös, [16]; Thanou et al. [17])

Jablonski et al. BMC Evolutionary Biology  (2016) 16:99 Page 7 of 18
clade. Outside the Balkans, A. colchica forms two add-
itional clades distributed in the Caucasus (A. c. colchica;
the Colchica clade) and the southern Caspian region (A. c.
orientalis; the Orientalis clade); see also [14]. The Pontic
clade is currently only known from the Strandzha Mts.
in southeastern Bulgaria. The mtDNA polymorphism of
the Pontic clade is relatively high (8 haplotypes within
13 specimens) in respect to its restricted geographical
range (Fig. 3b, c). The Incerta clade (16 haplotypes
within 43 specimens) is widespread along the Car-
pathians and the Stara Planina Mts., with relatively high
genetic variation and diversified into three main well-
supported lineages: (i) Stara-Planina lineage in the
region of the Stara Planina Mts. and the northern foot-
hills, reaching the Serbian Carpathians (sites 111, 112);
(ii) Banatian lineage detected in the Banat (southwest-
ern Carpathians); and (iii) Carpathian lineage present in
most of the Carpathians with a further sub-structure
forming at least four haplogroups; Carpathian I–IV
(Fig. 3a). The Carpathian I haplogroup seems to be
confined to Transylvania (Apuseni Mts. and their
vicinity; sites 94–99), while the other three are partially
sympatric. The Carpathian lineage contains haplotypes
that were also detected outside the Balkans in earlier stud-
ies (c1–c6, c12 – [14, 15]; AC01, AC02 – [16]; Fig. 3c).
Of the two Balkan endemics, A. graeca shows a

higher nucleotide but comparable haplotype diversity
(29 haplotypes detected among 49 individuals) than the
less widespread A. cephallonica. The genetic structure
of A. graeca is complex, characterized by many hap-
logroups but without deep divergences (Fig. 4). Only
two detected haplotypes (KJ634800, KJ634801) are rela-
tively divergent both from each other and from all other
haplotypes. They both originate from the same location in



Fig. 3 Anguis colchica, (a) maximum likelihood (ML) phylogeny, (b) geographical distribution of the main haplogroups in the Balkans, and (c)
parsimony haplotype networks of the two Balkan clades (Incerta and Pontic). See the legend to Fig. 2 for more details
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the northern Peloponnese (site 172). Geographical distri-
butions of most haplogroups are restricted to small areas,
mainly in the mountains of Albania (Fig. 4b). Only three
haplogroups have wider distribution: one in central and
southern mainland Greece, northern Peloponnese and
Euboea Island (graeca I); the second in western Greece,
Corfu Island and southern Albania (graeca V); and the
third one in Rep. Macedonia (graeca XI).
The Peloponnese endemic, A. cephallonica, has a

similarly complex phylogeographical structure with 13
haplotypes detected among 16 specimens (Fig. 5). One
haplotype (KJ634795) originating from the Mani
Peninsula in the south forms a lineage (hereafter the Mani
lineage) divergent from all the other haplotypes, which
form a well-supported monophylum (hereafter the
Widespread lineage; 2.4 % p-distance; Additional file 5:
Table S4; Fig. 5a). The Widespread lineage displays an
inner diversification with several haplogroups distributed
around the Peloponnese and Kephallonia Island with
east–west longitudinal structure and higher diversity in
the central Peloponnese (Fig. 5b, c).
Historical demography
The Bayesian skyline plots (BSPs; Figs. 6, 7 and 8) gave
evidence of population growth in all tested groups, with
the exception of the ‘Slovenian’ populations of A. fragilis
(Fig. 6c) and the Carpathian populations of A. colchica,
although a mild and relatively recent (during the last ca
80 Ky) population growth was detected in the Carpa-
thian lineage (Fig. 7b). A sharp population growth was
detected in the Stara-Planina lineage of A. colchica also
since ca 80 Kya (Fig. 7c). Comparing the two main
clades of A. colchica, population growth started earlier
in the Pontic clade (ca 200 Kya; Fig. 7d) than in the
Incerta clade (80 Kya; Fig. 7a). Considerable population
growth was also detected during the last 150 Ky in the
ICE + SB haplogroups of A. fragilis (Fig. 6a), or since ca
50 Kya when only the SB haplogroup was analysed
(Fig. 6b). Anguis graeca was analysed as a single popula-
tion due to its complex genetic variation with many
haplogroups. The BSP showed a substantial population
growth starting about 700 Kya, the population being
stable during the Middle Pleistocene and slightly



Fig. 4 Anguis graeca, (a) maximum likelihood (ML) phylogeny, (b) geographical distribution, and (c) parsimony haplotype network of the main
haplogroups. See the legend to Fig. 2 for more details
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declining during the last ca 80 Kya (Fig. 8a). In the wide-
spread lineage of A. cephallonica, a sign of population
growth was detected about 300 Kya ago and the lineage
has been stable since the last 100 Kya (Fig. 8b).
The complementary mismatch distributions (MDs;

Figs. 6, 7 and 8) showed a ragged distribution of the
observed values of pairwise differences in the predomin-
antly Slovenian A. fragilis (Fig. 6c), the Incerta clade of
A. colchica (Fig. 7a) and its Carpathian lineage (Fig. 7b),
and to some extent also in A. graeca and the widespread
lineage of A. cephallonica (Fig. 8a, b). In the other
analysed population groups the observed values mir-
rored the values expected for a growing- or declining-
population model. The neutrality tests showed signifi-
cant departures from the neutrality in the majority of
our groups, except for the predominantly Slovenian
haplogroups of A. fragilis, the Incerta clade of A. colchica
and its Carpathian lineage (Table 1).

Genetic diversity and topographic heterogeneity
Multiple linear regressions of nucleotide diversity (π) of
the lineages/haplogroups plotted against the Q3, median
above Q3, and modus above Q3 of the terrain ruggedness
index (TRI), and an area size inhabited by these line-
ages/haplogroups, were statistically significant (Table 2).
Partial regression analyses, however, revealed that only
TRI values, not the area size, had a significant effect on
the nucleotide diversity (Table 2, Fig. 9 and Additional file
2: Table S2, Additional file 3: Figure S1 and Additional file
4: Table S3). Standardized (beta) regression coefficients
were highly significant both when samples from the
Apuseni Mts. were included among the Carpathian sam-
ples as well as when they were treated separately.

Discussion
Distribution of slow worms in the Balkans and
contact zones
Due to relatively hard-to-interpret morphology and de-
scription of several vaguely defined forms and their inter-
mediates in the Balkan Peninsula, the distribution of slow
worms remained problematic and conflicting [18, 22, 44].
Recent molecular-phylogenetic studies [14, 15] recognized
four species of the genus Anguis within the Balkans and
have also painted the first coarse-grained picture of their



Fig. 5 Anguis cephallonica, (a) ML phylogeny, (b) geographical distributions, and (c) parsimony haplotype network of the main haplogroups.
See the legend to Fig. 2 for more details
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distribution, but the precise ranges have remained to be
revealed. Here, based on extensive sampling and molecu-
lar identification, we show detailed distribution of all four
species inhabiting the Balkan Peninsula (Figs. 1 and 10).
The Balkan slow worms are characterized by mostly
parapatric distributions, to large extent corresponding
with major geomorphological units of the peninsula. We
acknowledge that the distribution patterns revealed
here may not fully represent species distributions due
to the specific characteristics of the used mtDNA
marker (maternal and clonal inheritance, reduced ef-
fective population size, sex-specific dispersal, relatively
common interspecific introgression). However, the
overall phylogenetic patterns we found are vastly con-
cordant to previously published ones based on both
mtDNA and nuDNA markers [14, 15].
Among our studied species, Anguis cephallonica oc-

cupies the smallest range limited to the Peloponnese
Peninsula and the islands of Kephallonia, Ithaki, and
Zakynthos [17, 42, 43]. The distributions of the other
three species principally follows the main mountain
ranges in the Balkans; A. fragilis is distributed in the
Dinarides and Macedonian-Thracian Massif, A. colchica
in the Carpathians, Stara Planina, and Strandzha Mts.,
and A. graeca in the Hellenides.
It appears that while the ranges of A. fragilis and A.

graeca each meet with ranges of two other species in the
Balkans (furthermore, A. fragilis also forms a contact
zone with A. veronensis outside the Balkan Peninsula,
see [15]), A. colchica and A. cephallonica only come into
contact with one other species. Parts of the contact
zones presumably originated by crossing natural barriers
such as mountain ridges or river valleys. For instance,
the range of A. graeca crosses the Vardar River valley
and extends from the Hellenides into the Macedonian-
Thracian Massif where it forms a contact zone with A.
fragilis. On the other hand, A. fragilis inhabiting pre-
dominantly the Dinarides, Macedonian-Thracian Massif,
and their vicinity seems to have extended its range to
the south, across the northern borderline of the Helle-
nides, where it forms a contact zone with A. graeca
(Fig. 1). Historical demographic model indicates that an
expansion of the SB haplogroup of A. fragilis could
probably have happened during the Holocene (Fig. 6b).
Anguis graeca and A. cephallonica form a contact zone
and partial sympatry in the northern Peloponnese where
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Fig. 6 Mismatch distributions (MD) and Bayesian skyline plots (BSP) of Anguis fragilis lineages distributed in the Balkans. a Illyrian-Central
European + South Balkan haplogroups together; (b) South Balkan haplogroup separately; (c) Carniolan + Alpine-Pannonian + North Adriatic
(altogether = ‘Slovenian’) haplogroups together
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they both might have come into contact repeatedly as
climatic oscillations and resulting sea-level changes led
to repeated connection and disconnection of the penin-
sula and the mainland during the Pleistocene [17, 45]. It
seems that ranges of A. graeca and A. colchica do not
come into recent contact because A. fragilis populations
are embedded between them.

Multiple refugia and colonization routes
All four species of slow worms show high levels of
intraspecific genetic differentiation in the Balkans and
are sub-structured into several divergent lineages or
haplogroups. This genetic structure was shaped by local
restrictions of ranges into multiple Pleistocene refugia
located in the Peloponnese (A. cephallonica), Hellenides
(A. graeca), southern Carpathians (A. colchica), and
northwestern Dinarides (A. fragilis) (Fig. 10). Existence
of several smaller and isolated refugia that harboured
slow-worm populations during the Pleistocene climatic
oscillations within the Balkans is in concordance with
the refugia-within-refugia model originally proposed for
the Iberian Peninsula [46], and also suggested for the
Italian Peninsula based on the phylogeography of A. ver-
onensis [15]. This pattern might have more general
applicability in the Balkans where multiple refugia were
corroborated in both animals e.g. [8, 47–49] and plants
e.g. [50, 51]. They are located either in the Mediterra-
nean region (e.g. Adriatic coast, Peloponnese; [52]) or in
non-Mediterranean parts of the peninsula (Carpathians,
and the Prealps region between the Dinarides and Alps;
[4, 5, 53].
The biogeographical histories of slow worms from

southern and northern Balkan refugia differ. The ICE
haplogroup of A. fragilis and several haplogroups of the
Carpathian lineage of A. colchica colonized broad areas
of temperate Europe from their northern extra-
Mediterranean refugia. On the contrary, A. cephallo-
nica, A. graeca, the Pontic and Stara-Planina lineages of
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Fig. 7 Mismatch distributions (MD) and Bayesian skyline plots (BSP) of Anguis colchica lineages distributed in the Balkans. a Incerta clade;
(b) Carpathian lineage of the Incerta clade; (c) Stara-Planina lineage of the Incerta clade; (d) Pontic clade

A B

Fig. 8 Mismatch distributions (MD) and Bayesian skyline plots (BSP) of Anguis graeca (a) and A. cephallonica (b)
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Table 2 Results of the multiple linear regressions between nucleotide diversity (π), topographic heterogeneity [estimated as the
third quartile (Q3) of the terrain ruggedness index (TRI), and median and modus calculated for data above Q3], and the area size of
the topographic units inhabited by particular slow-worm lineages/haplogroups

Apuseni Mts. within the Carpathians Apuseni Mts. as a separate unit

R2/beta P R2/beta P

TRI (Q3)/area size 0.814 0.035 0.830 0.012

TRI (Q3) 0.987 0.015 0.935 0.004

area size 0.274 0.316 0.228 0.281

TRI (median above Q3)/area size 0.897 0.011 0.869 0.006

TRI (median above Q3) 1.110 0.004 0.973 0.002

area size 0.445 0.080 0.299 0.137

TRI (modus above Q3)/area size 0.843 0.025 0.847 0.009

TRI (modus above Q3) 0.966 0.010 0.922 0.003

area size 0.184 0.433 0.079 0.670

In the first set of analyses the Apuseni Mts. were considered to be a part of the Carpathians, in the second set of analyses they were treated as a separate
geographical unit. Coefficients of determination (R2) were computed for the overall model of multiple regressions [TRI (Q3)/area, TRI (median above Q3)/area, TRI
(modus above Q3)/area]. Standardized regression coefficients (beta) were calculated for the partial regressions between nucleotide diversity and TRI values, and
nucleotide diversity and the area size, respectively
P - probability values. Values in bold are statistically significant
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A. colchica, and the South Balkan haplogroup of A. fra-
gilis did not disperse much from their southern Medi-
terranean refugia and their distribution has remained
more localized south of the Danube River (Fig. 10).
In the case of Anguis fragilis our results indicate the

existence of at least three separate Pleistocene refugia.
The South Balkan haplogroup predominantly occurs in
the Macedonian-Thracian Massif, where a refugium
was presumably located. Outside this mountain range
the SB haplogroup only dispersed to the northernmost
Hellenides, probably recently, as a common and wide-
spread haplotype was detected there. Populations of the
ICE haplogroup colonized vast parts of the western
Balkans, but also central and northwestern Europe
from a refugium presumably located in the Dinarides.
This happened relatively rapidly, which is indicated by
A B

Fig. 9 Linear regressions between nucleotide diversity (π) of the Balkan slo
third quartile of the terrain ruggedness index of particular topographic uni
treated as a separate unit, while in the second analysis (b) the Apuseni Mts. w
P - probability value. Legends: 1 – Apuseni Mts., 2 – Stara Planina Mts.,
6 – Prealps, 7 – Peloponnese, 8 – Hellenides (without Peloponnese)
(i) a star-like pattern of the haplotype network and low
genetic variation of the ICE haplogroup and (ii) the
broad area presumably colonized from a single source
population [54]. The situation could be vividly illus-
trated using f1 haplotype (Fig. 2a, c): it is found not
only throughout the central and western Balkans, but
also in central Europe and as far as the British Isles
spread over an area of approximate length of 2000 km
[14]. The pattern of the haplotype network and current
distribution of A. fragilis suggests not only quick expan-
sion to the north, but also a gradual north-to-south/west-
to-east expansion during the Pleistocene, which is very
rare in terrestrial animals (Fig. 10; [55–57]).
We detected relatively high haplotype diversity of A. fra-

gilis in the northern Adriatic region (mainly in Slovenia;
Fig. 2b, c). Also the BSP analysis demonstrated population
w-worm evolutionary lineages/haplogroups and modus above the
ts (mountain systems). In the first analysis (a) the Apuseni Mts. were
ere considered to be a part of the Carpathians. b - regression coefficient,
3 – Macedonian-Thracian Massif, 4 – Dinarides, 5 – Carpathians,



Fig. 10 Pleistocene refugia (R) and proposed dispersal postglacial routes of slow worms in the Balkans. Approximate species distributions given
in colour shading correspond to the colour code in Fig. 1. Question marks denote missing distribution data
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stability for these ‘Slovenian’ haplogroups indicating a
long-term survival of slow-worm populations in this re-
gion. Such persistence in refugia at foothills of the Alps
has been described in several temperate amphibian and
reptile species e.g. [58–65]. This region was also probably
important in shaping genetic diversity of A. veronensis, the
species whose main part of the distribution range is
located in the Apennine Peninsula [15]. However, the
Prealpine slow-worm populations also contributed to the
colonization of the Pannonian Basin as indicated by the
phylogeographical pattern when extralimital samples were
included (Fig. 2a, c; haplotype AF05; [16]).
The Carpathians formed an important extra-
Mediterranean refugium of many temperate and cold-
adapted species e.g. [40, 56, 66, 67]. This was mainly
possible because most of the mountain range remained
ice-free during the last glacial maximum [68]. In some
taxa, distinct phylogenetic lineages have been detected
with distribution restricted to the Carpathians, which indi-
cates their long-term in situ survival (e.g. the newt Lisso-
triton vulgaris, [49, 69]; the toad Bombina variegata, [70]).
These populations also contributed to the postglacial
colonization of Europe. In the Carpathians or their close
vicinity we discovered haplotypes of three geographically



Jablonski et al. BMC Evolutionary Biology  (2016) 16:99 Page 15 of 18
well-separated lineages of A. colchica (Stara-Planina,
Banatian, and Carpathian lineages within the Incerta
clade; Fig. 3). While the Stara-Planina lineage (which is
currently also present in the Serbian Carpathians) pre-
sumably survived in a refugium outside the Carpathians,
the Carpathian and Banatian lineages are together com-
prised of several haplogroups that could be traced to
multiple microrefugia within the Carpathians. Close af-
finity of these haplotypes (or even identity in some
cases, e.g. haplotypes c1, c6) to those from central and
north-eastern Europe [14, 15] suggests that these areas
were historically colonized from the Carpathian refugia.
A very similar colonization pattern of the northern and
eastern Europe from the Romanian Carpathians has been
described in a rodent Clethrionomys glareolus [71].
Despite its limited distribution in the Balkans, the

Pontic clade of A. colchica shows relatively high mtDNA
polymorphism. Close phylogenetic relationships of the
southeast Bulgarian and Anatolian populations (own un-
published data) indicate that the Pontic lineage might
have colonized the Black Sea region of the Balkans dur-
ing the Pleistocene when the peninsula was accessible
from northern Anatolia via terrestrial route [72, 73].
The Peloponnese, inhabited by endemic A. cephallo-

nica, and the region west of the Pindus Mts. (with high
haplotype diversity of A. graeca) have favourable geog-
raphy with deep long valleys providing stable climatic
conditions. Consequently it is known for high endem-
ism of numerous plants, invertebrates, and vertebrates
[17, 74–76]. Multiple refugia in the region have already
been proposed [52]. Further in the north, most of
Albania and northwestern Greece are surrounded by
mountain ranges characterized by steep slopes and
deep valleys which could have had a strong isolating ef-
fect on A. graeca during the Plio-Pleistocene and
allowed divergence of its lineages. In contrast, the over-
all flat Skadar region enabled colonization of southern
parts of the region of present-day Montenegro and
forming a narrow zone of sympatric occurrence with A.
fragilis. The existence of several distinct haplogroups in A.
graeca indicates that this species has a longer and complex
evolutionary history. Overall high intraspecific genetic
diversity with up to 3.6 % in p-distances (Additional file 5:
Table S4) suggests older diversification events probably
associated with multiple refugia, e.g. in central and south-
ern Albania, northwestern Greece, and northern Pelopon-
nese where the most divergent haplotypes were found.

Correlation of genetic diversity and topographic
heterogeneity
Phylogeographical analysis of all Balkan slow-worm species
showed different patterns of intraspecific divergences and
genetic diversity for each studied species, presumably mir-
roring their different, contrasting, evolutionary histories.
Specifically, lineages with more pronounced genetic
structure inhabit landscapes with higher terrain rugged-
ness, i.e. higher altitudinal differences, more numerous
and deeper valleys, and steeper slopes. Our regression
analysis indeed confirms this pattern with high signifi-
cance – lineages with higher nucleotide diversity inhabit
mountain systems characterized by higher elevational dif-
ferences, i.e. rugged terrain (Table 2, Fig. 9 and Additional
file 2: Table S2, Additional file 3: Figure S1 and Additional
file 4: Table S3).
The general pattern described as southern richness

and northern purity [3] is typical for many taxa on a
broad continental scale and can also be observed in slow
worms: the species with highest genetic diversity are A.
graeca and A. cephallonica inhabiting the very south of
the genus range in the Balkans. A detailed view reveals
that even within the relatively small ranges of these spe-
cies, the highest diversity can be found in smaller and
more southerly located areas, corresponding to local
microrefugia (or refugia within refugia; [46]). The situ-
ation is however different for the two northerly occur-
ring species, A. colchica and A. fragilis, in which the
populations with highest diversity occur in more
northerly-located areas in the Balkans. More pro-
nounced altitudinal differences, steep exposed slopes,
and generally more heterogeneous landscapes create nu-
merous effective barriers preventing dispersal of small
legless lizards, such as slow worms, in which the disper-
sal ability is also limited by semifossorial lifestyle [77].
Such combination of life history and habitat characteris-
tics provides suitable predispositions for isolation and
subsequent divergence of populations. On the other
hand, lowlands, plains, low-hill regions and slightly roll-
ing landscapes offer fewer barriers to dispersal and gene
flow, and thus divergence occurs less often. Our obser-
vations on correlation of slow-worm genetic diversity
with topographic ruggedness are fully in concordance
with the fact that 33 (63 %) of the 52 identified Mediter-
ranean refugia are situated in submontane and montane
areas [52].

Conclusions
Our study uncovered mitochondrial DNA variation and
distribution of four Anguis species and hidden diversity
of their populations in the Balkans. These species have
mostly parapatric distributions that correspond with
major mountain ranges. We showed that biogeography
of the genus in the Balkans is concordant with the
refugia-within-refugia model previously proposed for
other main European Peninsulas. The role of Mediter-
ranean as well as extra-Mediterranean refugia was
detected in the evolutionary history of slow worms with
varying ages and degrees of post-glacial recolonization.
Beside climatic historical events, we consider the
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complex topography of the Balkans as one of the most
important factors in shaping recent genetic diversity of
slow worms. Topographic heterogeneity seems to be a
good predictor of both genetic and species diversity, in
general. The pattern observed on slow-worm refugia in
the Balkan Peninsula thus illustrates and highlights the
fact that many global biodiversity hotspots and endem-
ism centres are located in montane regions [78–82]. As
it has been suggested in other taxa [13, 83–86], com-
plex mountain topography offers conditions that could
facilitate genetic isolation and divergence and result
thus in a high rate of speciation.
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Additional file 1: Table S1. A list of samples, their coordinates, locality numbers in maps 

(Figs. 2-5), and GenBank accession numbers. Sample IDs in bold were already used earlier 

(Gvoždík et al. 2010, 2013). 

 
Species lineage/haplogroup Locality Coordinates 

 

Sample 

ID 

Locality 

number 

Published haplotype GenBank 

accession 

number  

References 

   N E      

Anguis cephallonica  Greece        

 Widespread lineage Achladocampos, 

Ktenia Mts. 

 

37.51 22.61 - 184 - KJ634783 Thanou et al., 

2014 

 Widespread lineage Akoli Lake, 

Kephallonia Isl. 

 

38.19 20.67 - 173 - KJ634790 

 

Thanou et al., 

2014 

 Widespread lineage Akoli Lake, 

Kephallonia Isl. 

 

38.19 20.67 - 173 - KJ634791 

 

Thanou et al., 

2014 

 Widespread lineage Dirrachio, 

Erymanthos Mts. 

 

37.15 22.19 - 181 - KJ634793 

 

Thanou et al., 

2014 

 Widespread lineage Elati, Mainalo Mts. 

 

37.61 22.15 - 179 - KJ634782 Thanou et al., 

2014 

 Widespread lineage Gialova 36.95 21.70 A085gr 186 ce1 FJ666586 Gvoždík et 

al., 2010, 

2013 

 Widespread lineage Laggadia, Mainalo 

Mts. 

 

37.67 22.02 - 177 - KJ634788 

 

Thanou et al., 

2014 

 Mani lineage Lagia, Mani Pen. 

 

36.47 22.47 - 185 - KJ634795 

 

Thanou et al., 

2014 

 Widespread lineage Leontari, Taygetos 

Mts. 

37.31 22.15 - 183 ce1 KJ634792 

 

Thanou et al., 

2014 

 Widespread lineage Neochori, Taygetos 

Mts. 

 

37.16 22.25 - 182 - KJ634794 

 

Thanou et al., 

2014 

 Widespread lineage Pirgaki, Mainalo 

Mts. 

 

37.63 22.15 - 180 - KJ634786 

 

Thanou et al., 

2014 

 Widespread lineage Rodia, Kyparissia 

 

37.21 21.73 - 187 - KJ634785 

 

Thanou et al., 

2014 

 Widespread lineage Salmeniko, Ziria 

Mts. 

 

38.27 21.95 - 174 - KJ634784 

 

Thanou et al., 

2014 

 Widespread lineage Stymfalia Lake 37.88 22.48 A048gr 176 ce2 FJ666587 Gvoždík et 



 

al., 2010, 

2013 

 Widespread lineage Tripotama, 

Erymanthos Mts. 

 

37.86 21.89 - 175 - KJ634789 

 

Thanou et al., 

2014 

 Widespread lineage Valtesiniko, Mainalo 

Mts. 

 

37.68 22.11 - 178 - KJ634787 

 

Thanou et al., 

2014 

Anguis colchica  Bulgaria        

 Stara-Planina lineage Bozhenitsa 43.00 23.80 Abg33 117 - KX020147 This study 

 Pontic clade Brodilovo pass 42.10 27.83 Abg46 131 - KX020148 This study 

 Stara-Planina lineage Garvan 44.11 26.89 Abg29 127 - KX020149 This study 

 Stara-Planina lineage Godech 43.01 23.05 Abg41 116 - KX020150 This study 

 Pontic clade Gramatikovo 42.03 27.63 Abg49 136 - KX020151 This study 

 Pontic clade Izgrev 42.12 27.76 Abg47 133 - KX020152 This study 

 Pontic clade Kondolovo 42.09 27.65 Abg48 135 - KX020153 This study 

 Stara-Planina lineage Letnitsa 43.31 25.13 Abg36 121 - KX020154 This study 

 Stara-Planina lineage Makotsevo 42.69 23.80 Abg23 119 - KX020155 This study 

 Pontic clade Mladežko 42.16 27.43 Abg53 138 - KX020156 This study 

 Pontic clade Park Rosenec 42.43 27.53 Abg54 129 - KX020157 This study 

 Pontic clade Pass to Slivarovo 41.98 27.57 Abg50 137 - KX020158 This study 

 Pontic clade Pass to Slivarovo 41.98 27.57 Abg51 137 - KX020159 This study 

 Stara-Planina lineage Patresh 43.31 25.34 Abg37 122 - KX020160 This study 

 Stara-Planina lineage Pravetz 42.89 23.91 Abg10 118 - KX020161 This study 

 Stara-Planina lineage Pravetz 42.89 23.91 Abg11 118 - KX020162 This study 

 Pontic clade Ropotamo 42.30 27.72 Abg13 130 - KX020163 This study 

 Stara-Planina lineage Shipka 42.75 25.31 Abg05 124 - KX020164 This study 

 Stara-Planina lineage Shipka 42.75 25.31 Abg06 124 - KX020165 This study 

 Stara-Planina lineage Shipka 2 42.76 25.31 Abg30 123 - KX020166 This study 

 Stara-Planina lineage Shumen 43.26 26.89 Abg12 126 - KX020167 This study 

 Stara-Planina lineage Sinagovtsi 43.89 22.75 Abg04 113 - KX020168 This study 

 Pontic clade Sinemorec 42.06 27.97 Abg01 132 - KX020169 This study 

 Pontic clade Sinemorec 42.06 27.97 Abg02 132 - KX020170 This study 

 Pontic clade Sinemorec 42.06 27.97 Abg03 132 - KX020171 This study 

 Stara-Planina lineage Slavyani 43.27 24.65 Abg24 120 - KX020172 This study 

 Stara-Planina lineage Slavyani 43.27 24.65 Abg25 120 - KX020173 This study 

 Stara-Planina lineage Srebarna 44.07 27.04 Abg28 128 - KX020174 This study 

 Pontic clade Strandža (Silkosia) 42.08 27.74 Abg35 134 - KX020175 This study 

 Stara-Planina lineage Targovishte 43.54 22.74 Abg43 114 - KX020176 This study 

 Stara-Planina lineage Triyavna  42.86 25.48 Abg21 125 - KX020177 This study 

  Romania        

 Carpathian lineage IV Bazna 46.20 24.28 Aro02 100 c6, c12 KX020178 This study 

 Banatian lineage Cheile Sohodolului 45.14 23.13 Aro12 108 - KX020179 This study 



 

 Carpathian lineage II Cheile Sohodolului 45.14 23.13 Aro13 108 - KX020180 This study 

 Carpathian lineage I Finatale Clujuluj 46.83 23.62 A118ro 96 c1, c2, c5 FJ666580 Gvoždík et 

al., 2010, 

2013 

 Carpathian lineage I Geoagiu de Sus 46.30 23.52 Aro07 99 c1, c2, c5 KX020181 This study 

 Carpathian lineage I Geoagiu de Sus 2 46.29 23.54 Aro08 98 c1, c2, c5 KX020182 This study 

 Carpathian lineage I Huta 47.00 22.94 Aro03 95  KX020183 This study 

 Carpathian lineage I Huta 47.00 22.94 Aro04 95  KX020184 This study 

 Carpathian lineage III Laslea 46.19 24.64 Aro11 101 - KX020185 This study 

 Carpathian lineage IV Maramures Mts. 47.86 24.15 Aro18 93 c6, c12 KX020186 This study 

 Carpathian lineage III Nou Sasesc 46.11 24.59 Aro10 102 - KX020187 This study 

 Carpathian lineage III Poieni 

 

47.04 27.69 Aro19 105 - KX020188 This study 

 Carpathian lineage I Runcu Salvei 47.20 24.20 Aro01 94 - KX020189 This study 

 Carpathian lineage III Sacadat 46.61 25.06 Aro09 103 - KX020190 This study 

 Carpathian lineage IV Schitul Locurele 45.25 23.37 Aro16 106 c6, c12 KX020191 This study 

 Stara-Planina lineage Sfanta Elena 44.67 21.71 Aro14 111 - KX020192 This study 

 Stara-Planina lineage Sfanta Elena 44.67 21.71 Aro15 111 - KX020193 This study 

 Carpathian lineage III Subcetate 46.42 25.40 Aro05 104 - KX020194 This study 

 Carpathian lineage IV Subcetate 46.42 25.40 Aro06 104 c6, c12 KX020195 This study 

 Carpathian lineage II Valea Bratcu 45.25 23.34 Aro17 107 - KX020196 This study 

 Carpathian lineage I Vartop, Bihar Mts. 46.51 22.66 AC01 97 c1, c2, c5 KFT736829 Szabó & 

Vörös, 2014 

 

  Serbia        

 Stara-Planina lineage Grza 43.90 21.65 gd28rs 112 - KX020197 This study 

 Banatian lineage Jasenovo 44.92 21.28 gd13rs 110 - KX020198 This study 

 Stara-Planina lineage Ponor, Stara Mts. 43.25 22.80 gd29rs 115 - KX020199 This study 

 Banatian lineage Vršački breg 45.13 21.35 gd10rs 109 - KX020200 This study 

Anguis fragilis  Albania        

 Illyrian-Central 

European 

Nikç 42.47 19.67 Aal01 62 - KX020201 This study 

  Bosnia and 

Herzegovina 

       

 Illyrian-Central 

European 

Gornji Podgradci 45.04 16.91 Aba01 17 f1, f2, f3, f12, f13, 

AF01 

KX020202 This study 

 Illyrian-Central 

European 

Kordići 43.96 17.46 Aba05 20 f1, f2, f3, f12, f13, 

AF01 

KX020203 This study 

 Illyrian-Central 

European 

Korita 43.03 18.49 Aba18 19 f11 KC881542 Gvoždík et al. 

2013 

 Illyrian-Central 

European 

Maglić Mt.  43.28 18.71 Aba09 29 f1, f2, f3, f12, f13, 

AF01 

KX020204 This study 

 Illyrian-Central 

European 

Maglić Mt. 43.28 18.71 Aba10 29 f1, f2, f3, f12, f13, 

AF01 

KX020205 This study 

 Illyrian-Central Nevesinje 43.24 18.09 Aba06 25 f1, f2, f3, f12, f13, KX020206 This study 



 

European AF01 

 Illyrian-Central 

European 

Nišići 44.05 18.46 Aba11 23 f1, f2, f3, f12, f13, 

AF01 

KX020207 This study 

 Illyrian-Central 

European 

Nišići 44.05 18.46 Aba12 23 f1, f2, f3, f12, f13, 

AF01 

KX020208 This study 

 Illyrian-Central 

European 

Nišići 44.05 18.46 Aba13 23 f1, f2, f3, f12, f13, 

AF01 

KX020209 This study 

 Illyrian-Central 

European 

Oštrelj 44.47 16.40 Aba02 14 f1, f2, f3, f12, f13, 

AF01 

KX020210 This study 

 Illyrian-Central 

European 

Oštrelj 44.47 16.40 Aba03 14  KX020211 This study 

 Illyrian-Central 

European 

Oštrelj 44.47 16.40 Aba04 14 f1, f2, f3, f12, f13, 

AF01 

KX020212 This study 

 Illyrian-Central 

European 

Požarnica 44.53 18.77 Aba14 22 f1, f2, f3, f12, f13, 

AF01 

KX020213 This study 

 Illyrian-Central 

European 

Požarnica 44.53 18.77 Aba15 22 f1, f2, f3, f12, f13, 

AF01 

KX020214 This study 

 Illyrian-Central 

European 

Suha 43.30 18.65 Aba08 26  KX020215 This study 

 Illyrian-Central 

European 

Suha 2 43.30 18.66 Aba19 27 f f1, f2, f3, f12, f13, 

AF01 

KX020216 This study 

 Illyrian-Central 

European 

Tjentište 43.36 18.70 Aba07 28 f10 KX020217 This study 

 Illyrian-Central 

European 

Trnovo 43.66 18.44 Aba16 24 f1, f2, f3, f12, f13, 

AF01 

KX020218 This study 

 Illyrian-Central 

European 

Trnovo 43.66 18.44 Aba17 24 f1, f2, f3, f12, f13, 

AF01 

KX020219 This study 

  Bulgaria        

 South Balkan Aleko, Vitosha Mts. 42.59 23.28 Abg22 73 - KX020220 This study 

 South Balkan Aleko, Vitosha Mts. 42.59 23.28 Abg26 73 - KX020221 This study 

 South Balkan Asenovgrad 41.98 24.87 Abg44 92 - KX020222 This study 

 South Balkan Belasitsa Mts. 41.35 23.12 Abg34 82 f5 KX020223 This study 

 South Balkan Belasitsa Mts. 2 41.32 23.12 Abg38 83 f5 KX020224 This study 

 South Balkan Kirilova Polyana 42.15 23.39 Abg17 79 - KX020225 This study 

 South Balkan Krusha 42.89 22.78 Abg40 68 - KX020226 This study 

 South Balkan Lozenska Mts.  42.58 23.44 Abg18 75 - KX020227 This study 

 South Balkan Lozenska Mts. 42.58 23.44 Abg19 75 - KX020228 This study 

 South Balkan Lozenska Mts. 2 42.59 23.43 Abg20 74 - KX020229 This study 

 South Balkan Novo Selo 42.17 22.68 Abg16 72 f5 KX020230 This study 

 South Balkan Osogovska Mts. 42.17 22.62 Abg27 71 f5 KX020231 This study 

 South Balkan Persenk 41.81 24.54 Abg39 91 - KX020232 This study 

 South Balkan Sapareva Banya 42.24 23.31 Abg08 77 - KX020233 This study 

 South Balkan Sapareva Banya 2 42.26 23.28 Abg09 78 f5 KX020234 This study 

 South Balkan Slavyanka 41.39 23.60 Abg15 84 f5 KX020235 This study 

 South Balkan Tsrancha 41.56 24.09 Abg31 86 f5 KX020236 This study 



 

 South Balkan Varvara 42.13 24.12 Abg45 85 - KX020237 This study 

 South Balkan Yavorov 41.85 23.40 Abg32 80 - KX020238 This study 

 South Balkan Žheleznica, Vitosha 

Mts. 

42.53 23.35 Abg42 76 - KX020239 This study 

 South Balkan Zhablyano 42.49 22.80 Abg07 69 - KX020240 This study 

 South Balkan Zhilentsi 42.25 22.63 Abg14 70 f5 KX020241 This study 

   Croatia        

 Illyrian-Central 

European 

Begovo Razdolje 45.30 14.91 Ahr10 8 f1, f2, f3, f12, f13, 

AF01 

KX020242 This study 

 Illyrian-Central 

European 

Dinara 44.04 16.41 Ahr06 15 f1, f2, f3, f12, f13, 

AF01 

KX020243 This study 

 Illyrian-Central 

European 

Hrvatska Dubica 45.18 16.80 Ahr08 16 - KX020244 This study 

 Illyrian-Central 

European 

Kamešnica 43.71 16.88 Ahr05 18 f1, f2, f3, f12, f13, 

AF01 

KX020245 This study 

 Illyrian-Central 

European 

Medvedica 45.89 16.03 Ahr09 9 f1, f2, f3, f12, f13, 

AF01 

KX020246 This study 

 North Adriatic Njivice 45.16 14.54 Ahr13 7 - KX020247 This study 

 Illyrian-Central 

European 

Poštak 44.25 16.11 Ahr07 13 f1, f2, f3, f12, f13, 

AF01 

KX020248 This study 

 Illyrian-Central 

European 

Prezid 44.24 15.80 Ahr01 12 f1, f2, f3, f12, f13 FJ666554 Gvoždík et al. 

2013 

 Illyrian-Central 

European 

Prezid 44.24 15.80 Ahr02 12 f1, f2, f3, f12, f13, 

AF01 

KX020249 This study 

 Illyrian-Central 

European 

Prezid 44.24 15.80 Ahr03 12 f1, f2, f3, f12, f13 KX020250 This study 

 Illyrian-Central 

European 

Ramići 44.34 15.48 Ahr11 11 f1, f2, f3, f12, f13, 

AF01 

KX020251 This study 

 Illyrian-Central 

European 

Spačva 45.04 18.90 Ahr12 21 f1, f2, f3, f12, f13 KX020252 This study 

 Illyrian-Central 

European 

Vugrovec 45.89 16.04 Ahr04 10 f1, f2, f3, f12, f13, 

AF01 

KX020253 This study 

  Greece        

 South Balkan Lepida 41.37 24.63 A093gr 90 f5 FJ666558 Gvoždík et 

al., 2010, 

2013 

 South Balkan Livadero 41.30 24.21 Agr01 88 f5 KX020254 This study 

 South Balkan Mesoropi 40.89 24.06 A052gr 89 f4 FJ666557 Gvoždík et 

al., 2010, 

2013 

 South Balkan Skaloti 41.45 24.31 A094gr 87 f5 KX020255 This study 

  Montenegro        

 Illyrian-Central 

European 

Ada Bojana 41.85 19.35 gd44me 61 - KX020256 This study 

 Illyrian-Central Boljevići 42.22 19.08 gd46me 59 f1, f2, f3, f12, f13, KX020257 This study 



 

European AF01 

 Illyrian-Central 

European 

Cetinje 42.39 18.91 A216me 53 - KX020258 This study 

 Illyrian-Central 

European 

Cetinje 2 42.39 18.92 A137me 54 - KX020259 This study 

 Illyrian-Central 

European 

Dobrota 42.45 18.77 gd23me 47 - KX020260 This study 

 Illyrian-Central 

European 

Ivanova Korita 42.37 18.83 gd39me 49 - KX020261 This study 

 Illyrian-Central 

European 

Jablan 42.62 19.43 gd50me 60 - KX020262 This study 

 Illyrian-Central 

European 

Koštanjica 42.47 18.65 gd24me 44 - KX020263 This study 

 Illyrian-Central 

European 

Krtoli 42.40 18.68 gd25me 45 - KX020264 This study 

 Illyrian-Central 

European 

Lokve Martiničke 42.58 19.23 gd48me 56 f1, f2, f3, f12, f13, 

AF01 

KX020265 This study 

 Illyrian-Central 

European 

Lovćen 42.39 18.84 Ame04 51 f1, f2, f3, f12, f13, 

AF01 

KX020266 This study 

 Illyrian-Central 

European 

Njeguši 42.43 18.85 gd42me 50 - KX020267 This study 

 Illyrian-Central 

European 

Orjen 42.52 18.53 Ame03 42 - KX020268 This study 

 Illyrian-Central 

European 

Resna 42.50 18.88 gd41me 48 - KX020269 This study 

 Illyrian-Central 

European 

Šišici 42.37 18.78 gd40me 46 - KX020270 This study 

 Illyrian-Central 

European 

Stijena 42.52 19.25 gd49me 57 - KX020271 This study 

 Illyrian-Central 

European 

Sutomore 42.14 19.04 Ame02 58 - KX020272 This study 

 Illyrian-Central 

European 

Suva Ponikvica 42.67 19.25 gd47me 55 - KX020273 This study 

 Illyrian-Central 

European 

Sveti Stefan 42.25 18.88 gd26me 52 f1, f2, f3, f12, f13, 

AF01 

KX020274 This study 

 Illyrian-Central 

European 

Ubli 42.52 18.63 gd35me 43 - KX020275 This study 

  Republic of 

Macedonia 

       

 South Balkan Pečkovo 41.78 20.83 Amk02 63 f5 KX020276 This study 

 South Balkan Prevedena 41.59 22.87 Amk01 81 f5 KX020277 This study 

  Serbia        

 Illyrian-Central 

European 

Avala 44.68 20.52 gd17rs 34 f1, f2, f3, f12, f13, 

AF01 

KX020278 This study 

 Illyrian-Central 

European 

Avala 2 44.68 20.51 Ars12 35 - KX020279 This study 



 

 South Balkan Brod 42.87 22.29 Ars03 66 f5 KX020280 This study 

 South Balkan Dimitrovgrad 43.02 22.78 gd31rs 67 - KX020281 This study 

 Illyrian-Central 

European 

Fruška Gora 45.11 19.78 Ars13 32 f1, f2, f3, f12, f13, 

AF01 

KX020282 This study 

 Illyrian-Central 

European 

Fruška Gora 2 45.15 19.70 Ars14 30 - KX020283 This study 

 Illyrian-Central 

European 

Gornja Trešnjica 44.12 19.50 gd27rs 39 f10 KX020284 This study 

 Illyrian-Central 

European 

Kaludjerica 44.75 20.55 gd16rs 36 f1, f2, f3, f12, f13, 

AF01 

KX020285 This study 

 Illyrian-Central 

European 

Kaludjerske Bare 43.96 19.41 Ars01 40 f10 KX020286 This study 

 Illyrian-Central 

European 

Kaludjerske Bare 43.96 19.41 Ars02 40 f10 KX020287 This study 

 South Balkan Kriva Feja 42.58 22.13 gd32rs 64 f5 KX020288 This study 

 Illyrian-Central 

European 

Novi Vitojevci 44.78 19.80 gd22rs 33 - KX020289 This study 

 Illyrian-Central 

European 

Petnica 44.24 19.93 Ars09 38 f10 KX020290 This study 

 Illyrian-Central 

European 

Petnica 44.24 19.93 Ars10 38 f10 KX020291 This study 

 Illyrian-Central 

European 

Petnica 44.24 19.93 Ars11 38 - KX020292 This study 

 Illyrian-Central 

European 

Rogača 44.45 20.52 gd18rs 37 f1, f2, f3, f12, f13, 

AF01 

KX020293 This study 

 South Balkan Ruplje 42.83 22.21 Ars15 65 f5 KX020294 This study 

 Illyrian-Central 

European 

Sremska Kamenica 45.21 19.84 Ars04 31 f1, f2, f3, f12, f13, 

AF01 

KX020295 This study 

 Illyrian-Central 

European 

Sremska Kamenica 45.21 19.84 Ars05 31 f1, f2, f3, f12, f13 KX020296 This study 

 Illyrian-Central 

European 

Sremska Kamenica 45.21 19.84 Ars06 31 f1, f2, f3, f12, f13, 

AF01 

KX020297 This study 

 Illyrian-Central 

European 

Sremska Kamenica 45.21 19.84 Ars07 31 f1, f2, f3, f12, f13, 

AF01 

KX020298 This study 

 Illyrian-Central 

European 

Sremska Kamenica 45.21 19.84 Ars08 31 f1, f2, f3, f12, f13, 

AF01 

KX020299 This study 

 Illyrian-Central 

European 

Užice 43.86 19.84 A043Brs 41 f10 KC881541 Gvoždík et 

al., 2010, 

2013 

  Slovenia        

 Alpine-Pannonian Bohinj Lake 46.29 13.90 A065si 3 f6 FJ666559 Gvoždík et 

al., 2010, 

2013 

 North Adriatic Dobrava 45.52 13.62 gd06si 1 AF06 KX020300 This study 

 North Adriatic Fiesa, Piran 45.52 13.58 AF06 2 AF06 KF736836 Szabó & 

Vörös, 2014 



 

 Carniolan Jablanica 45.53 14.28 gd09si 6 - KX020301 This study 

 Carniolan Kozina  45.60 13.95 A205si 5 f9 KC881540 Gvoždík et al. 

2013 

 Alpine-Pannonian Zalošče 45.90 13.90 A206si 4 f6 FJ666559 Gvoždík et al. 

2013 

Anguis graeca  Albania        

 graeca XII  Dajti Mt. 41.36 19.91 A154al 141 - KX020302 This study 

 graeca IX  Diviakë 40.95 19.47 A029al 142 g13 FJ666572 Gvoždík et 

al., 2010, 

2013 

 graeca III Diviakë 40.95 19.47 A027al 142 - KX020303 This study 

 graeca V  Dukat 40.21 19.58 A023al 143 g15 FJ666574 Gvoždík et 

al., 2010, 

2013 

 graeca V Dukat 40.21 19.58 A024al 143 - KX020304 This study 

 graeca IV Ersekë 40.32 20.67 A025al 156 g4 FJ666563 Gvoždík et 

al., 2010, 

2013 

 graeca IV Ersekë 40.32 20.67 A044al 156 g5 FJ666564 Gvoždík et 

al., 2010, 

2013 

 graeca IV Ersekë 40.32 20.67 A045al 156 g5 KX020305 This study 

 graeca II Himarë 40.10 19.75 A028al 144 g7 FJ666566 Gvoždík et 

al., 2010, 

2013 

 graeca VII Korcë 40.61 20.82 A022al 157 g16 FJ666575 Gvoždík et 

al., 2010, 

2013 

 graeca X Milot 41.69 19.74 Aal02 140 - KX020306 This study 

 graeca II Syri i Kaltër 39.92 20.19 A026Bal 145 g8 FJ666567 Gvoždík et 

al., 2010, 

2013 

  Greece        

 graeca I Ag. Vasilios, Patra 38.31 21.80 - 166 g1 KJ634797 

 

Thanou et al., 

2014 

 graeca V Ampelochori 39.53 21.03 A092gr 161 g10 FJ666569 Gvoždík et 

al., 2010, 

2013 

 graeca IV Aoos River 40.05 20.76 A091gr 155 g6 FJ666565 Gvoždík et 

al., 2010, 

2013 

 KJ634800 

 

Doxa Lake, Feneos 37.92 22.29 - 172 - KJ634800 

 

Thanou et al., 

2014 

 KJ634801 

 

Doxa Lake, Feneos 37.92 22.29 - 172 - KJ634801 

 

Thanou et al., 

2014 

 graeca I Fylakti 39.30 21.68 A089gr 163 g2 FJ666561 Gvoždík et 



 

al., 2010, 

2013 

 graeca V Gliki 39.33 20.55 A053gr 154 g9 FJ666568 Gvoždík et 

al., 2010, 

2013 

 graeca VI Gliki 39.33 20.55 A054gr 154 g12 FJ666571 Gvoždík et 

al., 2010, 

2013 

 graeca V Kerkyra - Chrisida 39.59 19.90 A095gr 147 g11 FJ666570 Gvoždík et 

al., 2010, 

2013 

 graeca V Kerkyra - Gardiki 39.48 19.88 A238gr 149 - KX020307 This study 

 graeca V Kerkyra - Moraitika 39.48 19.92 A246gr 150 g9 KX020308 This study 

 graeca V Kerkyra - Perivoli 39.41 20.02 A239gr 151 - KX020309 This study 

 graeca V Kerkyra - Perivoli 2 39.41 20.01 A240gr 153 - KX020310 This study 

 graeca V Kerkyra - Perivoli 2  39.41 20.01 A241gr 153 - KX020311 This study 

 Albanian-Greek  Kerkyra - Poulades 39.67 19.77 A243gr 146 - KX020312 This study 

 graeca V Kerkyra - Stavros 39.53 19.91 A247gr 148 - KX020313 This study 

 graeca V Kerkyra - Stavros 39.53 19.91 A248gr 148 - KX020314 This study 

 graeca V Kerkyra - Vitalades 39.41 20.02 A242gr 152 - KX020315 This study 

 Greek Kremasta Lake, 

Karpenisi 

38.88 21.49 - 164 - KJ634796 

 

Thanou et al., 

2014 

 graeca I Kryoneritis 38.93 23.28 A086gr 171 g2 FJ666561 Gvoždík et 

al., 2010, 

2013 

 graeca I Mornos River 38.49 22.06 A049gr 168 g1 FJ666560 Gvoždík et 

al., 2010, 

2013 

 graeca I Mornos River 38.49 22.06 A050gr 168 g1 FJ666560 Gvoždík et 

al., 2010, 

2013 

 graeca I Mornos River 38.49 22.06 A051gr 168 g1 FJ666560 Gvoždík et 

al., 2010, 

2013 

 graeca I Pefki-Artemision 39.01 23.23 A087gr 170 g2 FJ666561 Gvoždík et 

al., 2010, 

2013 

 graeca I Pefki-Artemision 39.01 23.23 A088gr 170 g2 FJ666561 Gvoždík et 

al., 2010, 

2013 

 graeca I Pertouli 39.54 21.47 A090gr 162 g2 FJ666561 Gvoždík et 

al., 2010, 

2013 

 graeca I Stomio 39.89 22.62 A076gr 169 g3 FJ666562 Gvoždík et 

al., 2010, 

2013 
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 graeca I Stomio 39.89 22.62 A077gr 169 g3 KX020316 This study 

 graeca I Stomio 39.89 22.62 A078gr 169 g2 KX020317 This study 

 graeca I Strofylia Lake, 

Pyrgos 

38.15 21.40 KJ634799 

 

165 - KJ634799 

 

Thanou et al., 

2014 

 graeca I Velvina, Nefpaktos 38.40 21.78 KJ634798 

 

167 - KJ634798 

 

Thanou et al., 

2014 

  Montenegro     -   

 graeca VIII Ulcinj 41.93 19.21 A064me 139 g14b FJ666573 Gvoždík et 

al., 2010, 

2013 

  Republic of 

Macedonia 

       

 graeca XI Bistra Mts. 41.53 20.66 Amk04 158 - KX020318 This study 

 graeca XI Bistra Mts.  41.53 20.66 Amk05 158 - KX020319 This study 

 graeca XI Bistra Mts. 41.53 20.66 Amk06 158 - KX020320 This study 

 graeca XI Kriva Palanka 42.20 22.31 Amk07 160 - KX020321 This study 

 graeca XI Vrbjani 41.33 21.38 Amk03 159 - KX020322 This study 



 

 

 

Mountain unit Locality number 
in Figs. 2-5  

Sample ID 

Apuseni Mts. 95 Aro03, Aro04 
Apuseni Mts. 96 A118ro 
Apuseni Mts. 97 AC01 
Apuseni Mts. 98 Aro08 
Apuseni Mts. 99 Aro07 
Carpathians 93 Aro18 
Carpathians 100 Aro02 
Carpathians 101 Aro11 
Carpathians 102 Aro10 
Carpathians 103 Aro09 
Carpathians 104 Aro05, Aro06 
Carpathians 106 Aro16 
Carpathians 107 Aro17 
Carpathians 108 Aro13 
Dinarides 8 Ahr10 
Dinarides 11 Ahr11 
Dinarides 12 Ahr02, Ahr03 
Dinarides 13 Ahr07 
Dinarides 14 Aba02, Aba03, Aba04 
Dinarides 15 Ahr06 
Dinarides 18 Ahr05 
Dinarides 20 Aba05 
Dinarides 22 Aba14, Aba15 
Dinarides 23 Aba11, Aba12, Aba13 
Dinarides 24 Aba16, Aba17 
Dinarides 25 Aba06 
Dinarides 19 Aba18 
Dinarides 26 Aba08 
Dinarides 27 Aba19 
Dinarides 28 Aba07 
Dinarides 29 Aba09, Aba10 
Dinarides 39 gd27rs 
Dinarides 38 Ars09, Ars10, Ars11 
Dinarides 40 Ars01, Ars02 

Additional file 2: Table S2. Samples used in regression analyses of nucleotide diversity (π) and

terrain ruggedness index (TRI), and their assignment to the particular topographic mountain units

(mountain ranges).



 

Dinarides 41 A043Brs 
Dinarides 42 Ame03 
Dinarides 43 gd35me 
Dinarides 44 gd24me 
Dinarides 45 gd25me 
Dinarides 46 gd40me 
Dinarides 47 gd23me 
Dinarides 48 gd41me 
Dinarides 49 gd39me 
Dinarides 50 gd42me 
Dinarides 51 Ame04 
Dinarides 52 gd26me 
Dinarides 53 A216me 
Dinarides 54 A137me 
Dinarides 55 gd47me 
Dinarides 56 gd48me 
Dinarides 57 gd49me 
Dinarides 58 Ame02 
Dinarides 59 gd46me 
Dinarides 60 gd50me 
Dinarides 61 gd44me 
Dinarides 62 Aal01 
Hellenides 140 Aal02 
Hellenides 141 A154al 
Hellenides 143 A023al 
Hellenides 144 A028al 
Hellenides 145 A026Bal 
Hellenides 154 A053gr, A054gr 
Hellenides 155 A091gr 
Hellenides 156 A025al, A044al, A045al 
Hellenides 157 A022al 
Hellenides 158 Amk04, Amk05, Amk06 
Hellenides 161 A092gr 
Hellenides 162 A090gr 
Hellenides 163 A089gr 
Hellenides 164 KJ634796 
Hellenides 167 KJ634798 
Hellenides 168 A049gr, A050gr, A051gr 
Prealps 3 A065si 
Prealps 4 A206si 
Prealps 5 A205si 
Prealps 6 gd09si 
Peloponnese 174 KJ634784 



 

Peloponnese 175 KJ634789 
Peloponnese 176 A048gr 
Peloponnese 177 KJ634788 
Peloponnese 178 KJ634787 
Peloponnese 179 KJ634782 
Peloponnese 180 KJ634786 
Peloponnese 181 KJ634793 
Peloponnese 182 KJ634794 
Peloponnese 183 KJ634792 
Peloponnese 184 KJ634783 
Peloponnese 185 KJ634795 
Macedonian-
Thracian Massif 

64 gd32rs 

Macedonian-
Thracian Massif 

65 Ars15 

Macedonian-
Thracian Massif 

66 Ars03 

Macedonian-
Thracian Massif 

67 gd31rs 

Macedonian-
Thracian Massif 

68 Abg40 

Macedonian-
Thracian Massif 

69 Abg07 

Macedonian-
Thracian Massif 

70 Abg14 

Macedonian-
Thracian Massif 

71 Abg27 

Macedonian-
Thracian Massif 

72 Abg16 

Macedonian-
Thracian Massif 

73 Abg22, Abg26 

Macedonian-
Thracian Massif 

74 Abg20 

Macedonian-
Thracian Massif 

75 Abg18, Abg19 

Macedonian-
Thracian Massif 

76 Abg42 

Macedonian-
Thracian Massif 

77 Abg08 

Macedonian-
Thracian Massif 

78 Abg09 

Macedonian-
Thracian Massif 

79 Abg17 

Macedonian-
Thracian Massif 

80 Abg32 

Macedonian-
Thracian Massif 

81 Amk01 

Macedonian-
Thracian Massif 

82 Abg34 



 

Macedonian-
Thracian Massif 

83 Abg38 

Macedonian-
Thracian Massif 

84 Abg15 

Macedonian-
Thracian Massif 

85 Abg45 

Macedonian-
Thracian Massif 

86 Abg31 

Macedonian-
Thracian Massif 

87 A094gr 

Macedonian-
Thracian Massif 

88 Agr01 

Macedonian-
Thracian Massif 

90 A093gr 

Macedonian-
Thracian Massif 

91 Abg39 

Macedonian-
Thracian Massif 

92 Abg44 

Stara Planina Mts. 111 Aro14, Aro15 
Stara Planina Mts. 112 gd28rs 
Stara Planina Mts. 113 Abg04 
Stara Planina Mts. 114 Abg43 
Stara Planina Mts. 115 gd29rs 
Stara Planina Mts. 116 Abg41 
Stara Planina Mts. 117 Abg33 
Stara Planina Mts. 118 Abg10, Abg11 
Stara Planina Mts. 119 Abg23 
Stara Planina Mts. 123 Abg30 
Stara Planina Mts. 124 Abg05, Abg06 
Stara Planina Mts. 125 Abg21 
Stara Planina Mts. 126 Abg12 

 



 

 

 

 

Additional file 3: Figure S1. A map of demarcated topographic units as defined for regression

analyses of nucleotide diversity (π) and terrain ruggedness index (TRI).



 

 

Mountain units nucleotide diversity 
(π) 

Area (km2) TRI Q3 TRI Q3 median TRI Q3 modus 

Apuseni Mts. 0.073 1102.9175 67.3238 83.5464 67.8307 
Carpathians 0.489 6537.1879 70.4486 88.0625 81.0432 
Dinarides 0.233 5856.8021 67.5870 88.0000 67.6757 
Hellenides 1.202 4491.3329 85.4225 108.1457 93.1289 
Prealps 0.594 540.6640 75.9803 105.7071 77.9743 
Peloponnese 0.907 1073.7173 86.0000 106.2003 96.8504 
Macedonian-Thracian 
Massif 0.123 3218.7286 75.3260 91.6570 75.4785 
Stara Planina Mts. 0.098 2704.3606 67.3424 84.1368 68.3228 
Apuseni Mts. + 
Carpathians 0.454 7640.1053 69.9643 87.3184 74.6994 

 

Additional file 4: Table S3. Values of nucleotide diversity (π), area size of particular topographic units (in km2) and terrain

ruggedness index (TRI). The third quartile (TRI Q3), and median (TRI Q3 median) and modus (TRI Q3 modus) of data about TRI Q3

were used in regression analyses.



 

 

A. cephallonica               

 
Mani lineage 

Widespread 
lineage 

            

Mani lineage - 
 

            

Widespread lineage 2.4 -             

               

A. fragilis                

 
Carniolan 

Alpine-
Pannonian 

North Adriatic 
Illyrian-
Central 
European 

South Balkan 
         

Carniolan - 
   

          

Alpine-Pannonian 0.6 - 
  

          

North Adriatic 0.9 0.9 - 
 

          

Illyrian-Central 
European 

0.9 1.0 1.0 - 
          

South Balkan 1.0 1.0 1.1 0.3 -          

               

A. colchica               

 COLCHICA 
clade 

ORIENTALIS 
clade 

PONTIC clade 
INCERTA 
clade 

          

COLCHICA clade -              

ORIENTALIS clade 3.6 -             

PONTIC clade 4.7 3.8 -            

INCERTA clade 3.6 3.1 4.3 -           

               

 Stara-Planina 
lineage 

Banatian 
lineage 

Carpathian 
lineage 

           

Stara-Planina lineage -              

Banatian lineage 0.8 -             

Carpathian lineage 1.0 0.9 -            

               

Additional file 5: Table S4. Average uncorrected p-distances calculated among the main evolutionary lineages within each of the four Anguis

species distributed in the Balkans. The highest values are in bold.



 

A. graeca               

 
graeca XII graeca XI graeca X graeca IX graeca VIII graeca VII 

graeca 
VI 

graeca V 
graeca 
IV 

graeca III graeca II 
graeca 
I  

KJ634800 KJ634801 

graeca XII -              

graeca XI 1.2 -             

graeca X 1.2 0.8 -            

graeca IX 0.8 1.2 1.2 -           

graeca VIII 1.0 1.4 1.4 1.0 -          

graeca VII  1.8 1.9 1.6 1.8 1.9 -         

graeca VI 1.5 2.2 1.9 1.8 1.9 1.6 -        

graeca V 1.3 1.8 1.5 1.4 1.4 1.2 0.9 -       

graeca IV 1.4 1.8 1.4 1.4 1.3 1.6 1.6 1.1 -      

graeca III 1.2 1.6 1.6 1.2 1.1 1.6 1.7 1.2 0.8 -     

graeca II 1.6 2.0 1.7 1.6 1.4 1.7 1.7 1.2 0.8 0.9 -    

graeca I 1.4 1.8 1.6 1.4 1.3 1.5 1.6 0.9 0.7 0.7 0.8 -   

KJ634800 2.6 3.3 3.0 2.9 2.5 3.0 2.7 2.3 1.8 2.2 2.3 1.7 -  

KJ634801 3.1 3.6 3.3 3.1 3.0 3.1 3.3 2.6 2.3 2.5 2.5 1.9 2.5 - 
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