Multilocus phylogeny and coalescent species delimitation in Kotschy's gecko, *Mediodactylus kotschyi*: Hidden diversity and cryptic species

Panayiota Kotsakiozi\(^a,b\), Daniel Jablonski\(^c\), Çetin Ilgaz\(^d\), Yusuf Kumlutaş\(^d\), Aziz Avce\(^e\), Shai Meir\(^f,g\), Yuval Itescu\(^f,g\), Oleg Kukushkin\(^b,i\), Václav Gvoždik\(^j,k\), Giovanni Scillitani\(^l\), Stephanos A. Roussos\(^m,\(^h\)), David Jandzik\(^a,o\), Panagiotis Kasapidis\(^s\), Petros Lymberakis\(^a\), Nikos Poulakakis\(^a,b,\(^*\)

\(^a\) Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knossos Avenue, Irakleio 71409, Greece
\(^b\) Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece
\(^c\) Department of Zoology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84241 Bratislava, Slovakia
\(^d\) Dokuz Eylül University, Faculty of Science, Department of Biology, 35160 Bucas/İzmir, Turkey
\(^e\) Department of Zoology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84241 Bratislava, Slovakia
\(^f\) Department of Zoology, Faculty of Science and Arts, Department of Biology, 09010 Aydın, Turkey
\(^g\) School of Zoology, Tel Aviv University, 6997801 Tel Aviv, Israel
\(^h\) The Steinhardt Museum of Natural History, Tel Aviv University, 6997801 Tel Aviv, Israel
\(^i\) Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic
\(^j\) National Museum, Department of Zoology, 193 00 Prague, Czech Republic
\(^k\) Department of Biology, Institute of Zoology of Russian Academy of Sciences, Universitieskaya Emb. 1, Saint Petersburg 199034, Russia
\(^l\) Department of Herpetology, Institute of Zoology of Russian Academy of Sciences, Universitetskaya Emb. 1, Saint Petersburg 199034, Russia
\(^m\) Department of Zoology, Charles University in Prague, Vinohrady 7, Prague, 12844 Czech Republic
\(^n\) Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, P.O. Box 2214, 71003 Irakleio, Greece

A R T I C L E I N F O

Keywords:
Gekkonidae
Divergence times
Species delimitation
Species complex
Systematics
Eastern Mediterranean

A B S T R A C T

Kotschy's Gecko, *Mediodactylus kotschyi*, is a small gecko native to southeastern Europe and the Levant. It displays great morphological variation with a large number of morphologically recognized subspecies. However, it has been suggested that it constitutes a species complex of several yet unrecognized species. In this study, we used multilocus sequence data (three mitochondrial and three nuclear gene fragments) to estimate the phylogenetic relationships of 174 specimens from 129 sampling localities, covering a substantial part of the distribution range of the species. Our results revealed high genetic diversity of *M. kotschyi* populations and contributed to our knowledge about the phylogenetic relationships and the estimation of the divergence times between them. Diversification within *M. kotschyi* began approximately 15 million years ago (Mya) in the Middle Miocene, whereas the diversification within most of the major clades have been occurred in the last 5 Mya. Species delimitation analysis suggests there exists five species within the complex, and we propose to tentatively recognize the following taxa as full species: *M. kotschyi* (mainland Balkans, most of Aegean islands, and Italy), *M. orientalis* (Levanti, Cyprus, southern Anatolia, and southwestern Aegean islands), *M. bartoni* (Crete), and *M. oertzeni* (southern Dodecanese Islands). This newly recognized diversity underlines the complex biogeographical history of the Eastern Mediterranean region.

1. Introduction

The Palearctic “naked-toed geckos” include ~100 species distributed from North Africa across the southern Balkans and southwestern and central Asia to northern India, western China, and southern Mongolia (Agarwal et al., 2014; Bauer et al., 2013). The taxonomy of these geckos has been unstable and remains unresolved, because qualitative characters have been used for generic delimitation...
B. P. Kotsakiozi et al.

Fig. 1. The study area and the sampling localities of the samples used in this study. Numbers correspond to the sampling localities codes given in Table S1. The map is redrawn based on the Mediodactylus kotschyi distribution according to Sindaco and Jeremčenko (2008) in order for the shaded area (A) to indicate the distribution range of the species. For clarity reasons, the specimens from the Aegean region and south continental Greece are presented in B. Populations of the different phylogenetic clades as presented in Fig. 2 are indicated with differently colored dots. Inset: Mediodactylus kotschyi (Vlorë, Albania); photo: Daniel Jablonski. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(Bauer et al., 2013 and references therein). Indicative of the great confusion is that the species of the genus Mediodactylus were initially assigned to the genus Gymnodactylus, later on to Cyrtodactylus and then removed to Tenuidactylus as a distinct subgenus (Szczerbak and Golubev, 1984). At present, Mediodactylus has been recognized as a full monophyletic genus (Bauer et al., 2013; Macey et al., 2000).

The genus Mediodactylus comprises 13 species (Uetz, 2018) with M. kotschyi (Steindachner, 1870) being its type species. Mediodactylus kotschyi is a thermophilic and xerophilic species inhabiting the Mediterranean and sub-Mediterranean landscapes and associated mainly with stony habitats at heights up to 1700 m a.s.l. (Böhme et al., 2009). It is a small gecko distributed in the Eastern Mediterranean and Black Sea regions from southeastern Italy in the west to Turkish Transcaucasian provinces in the east, and from south Greece, Cyprus and Israel in the south to the Danube River valley at the central and eastern Balkans (in the limits of Serbia and Bulgaria) and Crimea in the north (Böhme et al., 2009; Fig. 1). It is considered introduced in Italy, Serbia and Hungary (Böhme et al., 2009; Urosevic et al., 2016).

Mediodactylus kotschyi displays great morphological variation which is reflected in the at least 26 (Baran and Gruber, 1982; Szczerbak, 1960;
Szczerbak and Golubev, 1986) described subspecies (but see also Utz (2018) who mentioned 30 subspecies), 17 of which are found in Greece (Valakos et al., 2008). The species shows very high inter-population variability in external morphology (Beutler and Gruber, 1977; Kukushkin and Sharygin, 2005), making morphological differentiation at the subspecific level difficult due to the overlap of morphological characters used in their taxonomy (Ajité, 2014; Szczerbak and Golubev, 1986). The subspecies of M. kotschyi have been classified into four groups (Beutler, 1981): (i.) the kotschyi group in Italy, Albania, FYROM, southwestern and central Bulgaria, mainland Greece, northern and eastern Aegean islands, Cyclades islands, northern Sporades islands, Argosaronic islands, Ionian islands and Kythira; (ii.) the danilewskii group, which includes all the Asiatic subspecies and those from Crimea, western Thrace (NE Greece), eastern Bulgaria and Cyprus; (iii.) the bartoni group in Crete and its satellite islets, excluding Gavdos; and (iv.) the oertzeni group in the Kasos-Karpathos island group and Gavdos island. A recent study, based on 18 morphological characters in M. kotschyi samples from the Balkans and the Middle East, showed that although the discrimination between the kotschyi and the danilewskii groups is feasible, there are no explicit characters that can clearly discriminate the subspecies within each group (Ajité, 2014). Furthermore, the taxonomic classification at the subspecific level is not in congruence with the results of the only available phylogeographic study for this species (Kasapidis et al., 2005), which was based on a single mitochondrial marker and focused only on a part of the species distribution range (mainly on the Aegean islands and the neighboring mainland). However, these authors concluded that Beutler’s (1981) subspecies groups are phylogenetically robust, and suggested that a taxonomic revision of M. kotschyi was necessary.

High levels of “cryptic” diversity in common species is not an unusual phenomenon [e.g. see (Garcia-Porta et al., 2017)]. Thus, a taxonomic revision of the taxon is important since, as it has been underlined by the IUCN (Böhme et al., 2009), “it may be a species complex containing a number of threatened species”. If there are unrecognized species within M. kotschyi, some of them may be endangered or vulnerable. It is also important from a nature conservation perspective given that the species is distributed in numerous protected areas and is protected by national legislation in some countries (e.g., Greece and Israel (Valakos et al., 2008)). Thus, the knowledge of the actual number of species and their phylogenetic relationships will largely contribute to the design of possible conservation strategies. Mediodactylus kotschyi shows an exceptionally complex picture in terms of morphological variation and biogeographic patterns and it is an excellent example highlighting that “the systematic crisis” existing in some taxa severely affect their proper study and conservation. Additionally, the study of the phylogenetic relationships and the estimation of the possible number of cryptic species within this taxon, will contribute to our understanding of faunogenesis and connections between regions in the geological past - especially in cases of lack or inconsistency of paleogeographic data. The largest part of M. kotschyi’s distribution is located around the Eastern Mediterranean basin which is considered as one of the world’s top 25 “biodiversity hotspots” (Myers et al., 2000) and especially in Anatolia and the Aegean archipelago. This region has a complicated and rich geological history that has left its imprint on the biogeography of many other taxa, especially reptiles (Lymberakis and Poulakakis, 2010; Poulakakis et al., 2015).

Here, we explore the phylogenetic relationships within M. kotschyi covering almost its entire distribution (Fig. 1). We sequenced six gene fragments from three mitochondrial (mtDNA) and three nuclear (nuDNA) markers to assess its taxonomy and biogeographic history.

2. Material and methods

2.1. Samples, DNA extraction, amplification and sequencing

In total, 174 individuals were used (Table S1) from 129 sampling localities (Fig. 1) ranging from Italy to eastern Turkey and from Crimea to Israel covering almost the whole distribution range of the species (Sindaco and Jeremčenko, 2008). Exact sampling localities, specimen codes and GenBank accession numbers of all markers included in the phylogenetic analyses are shown in Table S1.

Total genomic DNA was isolated from tissue samples (tail or tongue) of specimens that were either frozen (~ 80 °C) and/or preserved in ethanol. DNA was isolated using an Ammonium Acetate based DNA extraction procedure (Bruford et al., 1998).

Three mtDNA (COI, cyt b, 16S rRNA) and three nuDNA (RAG2, MC1R, c-mos) markers were amplified. For the nuDNA dataset a subset of specimens that had been sequenced for the mtDNA markers, was sequenced for the three nuDNA markers. The samples for the nuDNA dataset were selected in order to represent all the major clades revealed by the phylogenetic analyses on mtDNA data based on the results of a Poisson Tree Processes (PTP) analysis (for details see below). Thus, the samples included in the nuDNA dataset and the concatenated mtDNA & nuDNA dataset is a subset of those included in the mtDNA dataset. The primers’ sequences and the conditions used for the PCR amplification of each fragment are presented in Table S2 (Supplementary File 1). Each PCR was performed in a 20 μL volume using a range of 50–150 ng of template DNA. The PCR products were purified with the Nucleospin PCR purification kit (Macherey-Nagel). Automated sequencing of each amplicon was performed in an ABI3730XL automated sequencer (using Big-Dye terminator chemistry). The primers used in the sequencing reactions were the same as in the PCR amplifications.

Sequences of four Tarentola species were used as outgroups (see Table S1 for sequences information). Although Tarentola is quite distant from Mediodactylus (Bauer et al., 2013), it was chosen as an outgroup due to three major reasons. First, we performed preliminary phylogenetic analyses (Neighbor Joining as implemented in MEGA, 1000 bootstraps) using different geckos lizards [Hemidactylus, Cyrtopodion, Stenodactylus] closely related to Mediodactylus as outgroups (sequences downloaded from GenBank) to test the effect of the outgroup selection on the tree topology (see Supplementary File 1; Fig S1). The topology of the ingroup was slightly affected by the outgroup choice (Fig. S1), mainly regarding the relationship of Crete (clade D) and sometimes that of clade E, with the remaining clades. However, these changes do not affect the main results of the study since regardless the outgroup selection, the exact same five major clades are formed in all the analyses and within each clade the exact same Mediodactylus samples are included. Thus, given that the primary aim of this study is to discuss the relationships within the respective phylogenetic clades (not the inter-clade relationships), we consider that the use of a relatively distant taxon as an outgroup does not affect the main results of the study. Second, all six gene fragments amplified in our study were also available for the Tarentola species used as outgroups and third the published data for Tarentola (Carranza et al., 2002) allowed us to use three external calibration points for the divergence time estimations (see divergence time estimation section).

2.2. Sequences alignment and genetic data analysis

Sequences were viewed and edited using CodonCode Aligner v. 4.1.1 (Codon code Corporation). The authenticity of the obtained sequences and the homology to the targeted mtDNA and nuDNA markers were evaluated with a BLAST search in the NCBI genetic database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The alignment of the sequences was performed separately for each gene with MAFFT v.7 (Katoh and Standley, 2013) with default parameters and auto strategy. The protein-coding gene fragments (cyt b, COI, RAG2, c-mos, and MC1R) were translated into amino acids prior to analysis, and did not show any stop codons. The heterozygotic positions in the nuclear markers were given ambiguity codes and were treated as unknown for the phylogenetic analyses (see 2.3. phylogenetic analyses section). Sequence divergences (uncorrected p-distances) were estimated in MEGA.
2.3. Phylogenetic analyses

Prior to the phylogenetic analyses, we used the Bayesian Information Criteria (BIC) as implemented in PartitionFinder v.1.1.1 (Lanfear et al., 2012) to calculate and select the best-fit partitioning scheme and DNA substitution models for each analysis. The partitions for the PartitionFinder (PF) were by codon, for each one of the five protein-coding genes (cyt b, COI, RAG2, c-mos, and MC1R). Thus, the alignment was partitioned into 16 blocks in total, including 15 blocks for the 1st, 2nd, and 3rd codon positions for the protein-coding genes and one block for the 16S rRNA gene fragment (for details see Supplementary File 1; Details on the Phylogenetic analyses).

Phylogenetic trees were constructed using Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. Maximum likelihood analyses were conducted with RAxML v. 8.1.21 (Stamatakis, 2014) using RAxMLGUI v.1.5 (Silvestro and Michalak, 2011) under the partition scheme and the models of evolution proposed by PF and parameters estimated independently for each partition (Supplementary File 1; Table S3). The best ML tree was selected from 500 iterations and the confidence of the branches of the best ML tree was assessed based on 1000 thorough bootstrap replicates. Bayesian Inference (BI) was performed in MrBayes v.3.2.6 (Ronquist et al., 2012). The partition scheme and the model applied in the analysis were indicated by PF and are presented in Table S3. All nucleotide substitution model parameters were unlinked across partitions and the different partitions were allowed to evolve at different rates using the “preset ratepr = variable” command. We ran eight concurrent chains (one cold and seven heated) for 5x10⁷ generations and recorded samples every 5000 generations. The first 25% of the samples were discarded as burn-in, and the remaining samples were used to summarize the posterior probability distributions for parameters (>95% indicate significant support) (Huelsenbeck and Ronquist, 2001). Results were analyzed in Tracer v.1.6.0 (Drummond and Rambaut, 2009). The sampled posterior trees were summarized using TreeAnnotator v.2.4.5 to generate a maximum clade credibility tree (maximum posterior probabilities) and calculate the mean ages and 95% highest posterior density (HPD) intervals for each node. The species tree inferred with *BEAST was visualized using FigTree v1.3.1 (Rambaut, 2012). The divergence times for the phylogenetic clades of M. kotchyi were estimated using three external calibration age constraints based on the estimated range of the ages of the Tarentola species used as outgroups (Carranza et al., 2002). More specifically, the divergence of Tarentola boehmei from T. deserti has been estimated between 5 and 8.4 Mya (Carranza et al., 2002) so we used the normal distribution and set the mean divergence time at 6.6 Mya in order to keep these age limits. Similarly, for the divergence of T. mauritanica from T. angustimentalis we set a mean estimate at 8.8 Mya, and for the divergence of boehmei/deserti group from mauritanica/angustimentalis group at 10.3 Mya.

2.4. Divergence times estimation

The divergence time estimation analysis was performed on the concatenated mtDNA and nuDNA dataset. This dataset, as mentioned above, consists of a subset of the samples of the mtDNA dataset. The samples were chosen to be sequenced for the nuDNA markers based on a preliminary Poisson Tree Processes (PTP) analysis performed on the mtDNA dataset. In the PTP analysis the sequence variation was divided into intra- and interspecies groups using the PTP model for delimiting species on a rooted phylogenetic tree (Zhang et al., 2013). This preliminary analysis was considered necessary since the extrapolation of rates across different timescales (i.e. across the population-species boundary) might result in non-valid dates (Ho et al., 2011). The PTP model was used to identify “independently evolving” entities in the mtDNA dataset, considering only the ingroup sequences. This method identifies the location of the switches from speciation to coalescent nodes on a tree and delimits independently evolving entities. In PTP, speciation or branching events are modeled in terms of number of substitutions (represented by branch lengths), considering that the number of substitutions between species is significantly higher than the number of substitutions within species. Analyses were conducted on the web server for PTP (http://species.h-its.org/ptp/) using the produced by MrBayes BI phylogenetic tree (see above). Divergence times of Mediodaclylus were estimated using the *BEAST package of BEAST2 v.2.4.5 on the dataset comprised of all the mtDNA and nuDNA sequences. The nuDNA data were not phased and the few heterozygotic positions were treated as unknown (N). This dataset consists of one representative per PTP entity and using unique specimen identifiers as the species trait, i.e. without a priori species definitions. In the BI analysis implemented in BEAST2, the data were partitioned according to gene and the substitution model indicated by the PartitionFinder (Table S3). For its greater accuracy we used the relaxed uncorrelated lognormal clock model (Drummond et al., 2006) in all partitions. A Yule process was chosen, as recommended for species-level phylogenies (Drummond and Rambaut, 2009). The analysis was run for 10⁹ generations with a sampling frequency of 1 per 5000 trees from which 25% were discarded as burn-in. Adequate sampling and convergence of the Markov chain was confirmed by inspection of the MCMC samples in Tracer v.1.6.0 (Drummond and Rambaut, 2009). The effective sample size (ESS) values of all parameters were well above 200, which is usually considered a sufficient level of sampling (Drummond and Rambaut, 2009). The sampled posterior trees were summarized using TreeAnnotator v.2.4.5 to generate a maximum clade credibility tree (maximum posterior probabilities) and calculate the mean ages and 95% highest posterior density (HPD) intervals for each node. The species tree inferred with *BEAST was visualized using FigTree v1.3.1 (Rambaut, 2012). The divergence times for the phylogenetic clades of M. kotchyi were estimated using three external calibration age constraints based on the estimated range of the ages of the Tarentola species used as outgroups (Carranza et al., 2002). More specifically, the divergence of Tarentola boehmei from T. deserti has been estimated between 5 and 8.4 Mya (Carranza et al., 2002) so we used the normal distribution and set the mean divergence time at 6.6 Mya in order to keep these age limits. Similarly, for the divergence of T. mauritanica from T. angustimentalis we set a mean estimate at 8.8 Mya, and for the divergence of boehmei/deserti group from mauritanica/angustimentalis group at 10.3 Mya.

2.5. Species delimitation

Species delimitation was performed using the Species Tree And Classification Estimation, Yarely - STACEY v.1.2.1 (Jones, 2015), in BEAST2 (Bouckaert et al., 2014), which is an extension of the multi-species coalescence model used in *BEAST (Heled and Drummond, 2010), in which a birth-death-collapse model is used to estimate the species tree. For this analysis, we used the concatenated dataset including both the nuDNA and mtDNA fragments and unique specimen identifiers as the species trait, i.e. without a priori species definitions (the 43 PTP entities were used as minimal clusters). Here we note that, the tree created by STACEY is not exactly a ‘species tree’ but more a ‘species or minimal clusters tree’ [SMC-tree, since the minimal requirement of the program is one individual in each minimal cluster (tip of the tree)]. So, in STACEY the possible number of species ranges from one (merge all the clades of the tree) to the number of individuals (PTP entities in our case). The input files (.xml) were created using BEAUti. The nucleotide substitution models were not given a priori but instead, the BEAST Model Test option was selected. As for other priors the Birth Death Model was used to estimate the species tree [priors: Collapse Height = 0.001, Collapse Weight = 0.5 using a beta prior (1.1) around [0.1], which is a flat prior on the number of species, Ploidy: equal to 2 for nuclear genes and 0.5 for mtDNA genes] and the Uncorrelated Lognormal Model to describe the relaxed molecular clock. The MCMC analysis was run for 10⁹ generations, saving the result every 10,000 generations. The obtained log files were analyzed with Tracer to verify that the convergence of the analysis had been achieved and that satisfactory effective sample sizes had been obtained. The value of lnL was stabilized after 10⁷ generations and the first 25% were discarded. Following the completion of STACEY analysis we used the
Species Delimitation: Analyser to process the log files and find out the distribution over species assignments (Jones et al., 2015).

3. Results

3.1. Alignment and genetic distances

A total of 1688 base pairs (bp) of concatenated mtDNA alignment (cyt b: 359 bp, 16S rDNA: 640 bp, COI: 689 bp) revealed 148 haplotypes with 738 bp (43.7%) variable and 641 bp (38.0%) parsimony informative sites (841 bp and 707 bp including the outgroup sequences). Based on the results of PTP analysis, 43 independent evolving entities were revealed and one specimen from each one was sequenced for the three nuDNA markers and used for the concatenated phylogenetic analyses and the estimation of times of divergence. The concatenated nuDNA alignment consisted of 1437 bp (MC1R: 685 bp, RAG2: 386 bp and c-mos: 366 bp), 97 bp (6.7%) and 80 bp (5.6%) of which were variable and parsimony informative sites, respectively (222 bp and 186 bp including the outgroup sequences).

The pairwise uncorrected p-distances between single sequences of M. kotschyi varied up to 24.4% in cyt b, 23.1% in 16S rDNA, 26.1% in COI, 3.3% in MC1R, 1.8% in c-mos, and 3.1% in RAG2 (pairwise distance matrix not shown). However, the mean genetic distances among the main lineages of M. kotschyi are ~17–18%, ~15–20%, ~11–16% for COI, cyt b and 16S rRNA respectively and 0.4–2% for the nuDNA markers. The mean genetic distance between and within the main lineages are presented in detail in Table 1.

3.2. Phylogenetic analyses

The best-fit partitioning schemes for each downstream analysis (ML and BI as performed in MrBayes and BEAST2) and the selected nucleotide substitution models are summarized in Table S3.

Bayesian Inference (ln L = −23,377.0) and Maximum Likelihood (ln L = −23,066.9) analyses of the concatenated mtDNA data set produced trees with similar topologies as shown in Fig. 2 (BI tree topology) and Fig. S2 (ML tree topology) respectively. The phylogenetic reconstruction from both analyses highlights the presence of five major monophyletic units (A–E), each one with high statistical support [PP ≥ 1.00 and BS ≥ 95]. Three of them (A, B, and C) can be divided further into four, six and four well-supported subclades (PP ≥ 0.99 and BS ≥ 80), respectively. More specifically, the populations originating from Albania, FYROM, Italy, northern/central Greece and the Cyclades islands cluster together (PP = 1.00 and BS = 91) forming one major phylogenetic clade (clade A; Fig. 1; green). Samples originating from the Cyclades islands form two distinct lineages separating the northern and southern subclades (clade A1) from the southern (subclade A2) islands. Clade B hosts populations from Anatolia, Cyprus and eastern Aegean islands (Fig. 1; dark blue). Within Clade B, Mediactylus kotschyi populations from Cyprus and those from Syria, Lebanon, and Israel form two different subclades (B3 and B5, respectively). However, the phylogenetic relationships between these subclades and the remaining ones of the Clade B are not resolved. Clade C (Fig. 1; light blue) hosts individuals originating from a broad geographic region (from Crimea through eastern Greece, Bulgaria and southern Turkey to an isolated and probably introduced population on Gavdos island). Clade D includes populations from Crete and its neighboring islets (Fig. 1; red), whereas clade E comprises populations from southeastern Aegean islands (Fig. 1; violet).

Both phylogenetic (ML and BI-MrBayes) analyses of the nuDNA dataset produced phylogenies (ln L = −3500.5 for ML and ln L = −3635.5 for BI) that are in agreement with the mitochondrial topologies but with incongruences in statistical support (Supplementary File 1; Fig. S3). Similarly, both ML and BI (as implemented in MrBayes) analyses of the concatenated mtDNA and nuDNA dataset (Supplementary File 1; Fig. S4) produced similar phylogenetic trees (ln L = −16,964.8 for ML and ln L = −16,988.0 for BI) to the concatenated mtDNA trees (see Fig. 2).

3.3. Divergence times

In the estimation of the divergence times as implemented in BEAST2, high ESSs were observed (~ln L = −35,004.14; ESS values > 242) and assessment of convergence statistics in Tracer indicated that analyses had converged. According to the estimated divergence times of M. kotschyi lineages, based on all 3 calibration points, the diversification of M. kotschyi lineages dates back to Middle Miocene at ~15 Mya (Fig. 3). The mean (as well as the 95% HPD interval) estimated divergence times between the main lineages of M. kotschyi are presented in detail in Fig. 3.

3.4. Species delimitation

The species delimitation analysis as implemented in STACEY produced high ESSs values (> 300) with ln L = −14,254.STACEY indicated five different lineages at 68% of the samples run in this analysis (total number of samples run; 108,003). A percentage of 10% of the analysis run, indicated 6 taxa while other possible number of taxa (between 4 and 8 taxa) were defined in a very low percentage of the runs (4–6% each).

Each one of the five defined taxa corresponds to one major clade (A to E) of the phylogenetic tree (Fig. 3). The uncorrected p-distance between the five STACEY-defined taxa is presented in Table 1.

4. Discussion

4.1. Phylogenetic relationships and biogeography of Mediactylus kotschyi species complex

A comprehensive and robust assessment of the phylogenetic relationships of M. kotschyi populations covering the largest part of its distributional range and using both mitochondrial and nuclear data is presented here. The traditional phylogenetic reconstructions (BI and ML) highlight the presence of five strongly supported clades, which correspond to three major geographic regions (Figs. 1 and 2); the “Western” (Fig. 1; green), the “Southern” (Fig. 1; red and violet) and the “Eastern” (Fig. 1; blue and light blue) regions.

The first region (Western; clade A) consists of specimens from

Table 1 Percentage (%) of sequence divergences (p-distance between groups) among the main lineages of M. kotschyi, for the COI/cytb/16S rRNA (below diagonal) and cmos/RAG2/mc1 (above diagonal). Values in diagonal in bold characters represent the within lineages sequence divergences [COI/cytb/16S rRNA-cmos/RAG2/mc1]. The names of the main lineages referring to the clades of the phylogenetic tree presented in Fig. 2.

<table>
<thead>
<tr>
<th>Clade</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.8/10.0/6.1/0.1/0.7/0.7</td>
<td>1.1/2.1/1.6</td>
<td>0.5/1.1/1.5</td>
<td>0.7/1.8/2.1</td>
<td>0.4/1.3/1.6</td>
</tr>
<tr>
<td>B</td>
<td>17.8/17.8/12.3</td>
<td>13.1/8.8/1.0-1.1/1.2</td>
<td>0.9/2.0/1.3</td>
<td>0.5/2.4/2.0</td>
<td>0.9/2.0/1.4</td>
</tr>
<tr>
<td>C</td>
<td>16.8/18.0/10.9</td>
<td>17.4/16.9/1.7</td>
<td>7.1/8.1/0.7-0.1/0.4/0.6</td>
<td>0.4/1.6/1.9</td>
<td>0.8/1.2/1.3</td>
</tr>
<tr>
<td>D</td>
<td>18.2/17.7/15.5</td>
<td>17.0/19.7/16.6</td>
<td>17.5/17.4/14.5</td>
<td>3.4/4.7/0.0/0.0/0.1</td>
<td>0.4/1.6/1.5</td>
</tr>
<tr>
<td>E</td>
<td>17.8/15.6/12.9</td>
<td>18.1/16.9/14.9</td>
<td>17.0/15.1/13.3</td>
<td>17.2/17.3/16.4</td>
<td>7.4/5.0/5.5-0.2/0.2/0.0</td>
</tr>
</tbody>
</table>
Greece (mainland Greece, Peloponnese, Evvoia, Kythira/Antikythira islands, Cyclades, and northern Aegean islands), FYROM, Italy and Albania. A similar grouping has also been recorded in other lizard species, such as the green lizards of the genus *Lacerta* and the snake-eyed skinks of the genus *Ablepharus* (Sagonas et al., 2014; Skourtanioti et al., 2016). However, the clustering of the Peloponnese and Cyclades populations with those in Albania and Italy (where the species is introduced) may also suggest human-mediated dispersal for Albanian

Fig. 2. Bayesian Inference (BI) tree reconstructed from the mtDNA dataset. Posterior probabilities (PP) and bootstrap (BS) support values resulted from the Bayesian Inference and Maximum Likelihood analyses respectively, are indicated with asterisks on the branches of the tree. BS < 70 and PP < 70, as well as statistical support of the very external clades are not presented. Individual codes are consistent with those in Table S1. Symbols used: *: PP ≥ 0.99 or BS ≥ 99, **: 0.90 < PP < 0.99 and 90 < BS < 99, ***: 0.70 < PP < 0.89 and 70 < BS < 89.
Within the Western region, there are two biogeographically important results; the first concerns the split of Cyclades islands to northern and southern part showing moderate/high differentiation (Table 1) in terms of genetic distance and the second one regards the clustering of the island of Kos with the Cyclades in subclade A2 (Fig. 2) instead of the eastern Aegean islands (within clade B). The majority of the populations distributed in the northern (subclade A1) and southern Cyclades (subclade A2) do not show great morphological differentiation (most of them are assigned to a single subspecies *M. k. saronicus*; Table S1).
Supplementary File 2) and the time frame of this differentiation (Fig. 3; ~3.9 Mya) seems to be slightly older than the known geological separation in this area (see map in Fig. 3; ~3.5 Mya). Interestingly, the same geological splitting between northern and southern Cyclades at ~3.6 Mya is evident in Podarcis lizards (Poulakakis et al., 2005) as well as in scorpions (Parmakelis et al., 2006) but the time estimates in this case was much older (~10 Mya). Given the broad confidence intervals in the time divergence estimation we cannot safely conclude if this split reflects the known geological separation of Cyclades (~3.5 Mya) or if it is older than that. In the latter case, vicariance events before the known geological separation of Cyclades may have created this divergence, although the exact geological or biological processes that contributed to the observed pattern remain unclear. The case of the island of Kos, which geographically belongs to eastern Aegean islands but phylogeographically is clustered with the Cyclades, is probably either one more case of ‘naughty’ animals (Poulakakis et al., 2015), namely animals that passed the Mid Aegean Trench (MAT) by dispersal, or a human-aided dispersal. Three representatives of the Aegean vertebrate fauna (Abilepharus, Ophisops, Anatololacerta, Pelophylax) and several invertebrates (Dolichopoda spp., Trachelipus aegaeus, Albinaria brevicollis Dichromma dardanum, Zonites rhodus) also have disjunct distributions and may also be a member of the ‘naughty’ animals (Lymberakis and Poulakakis, 2010; Poulakakis et al., 2015).

The Eastern region comprises two clades (B and C). Clade B hosts specimens from Anatolia, eastern Aegean islands, Syria, Lebanon, Israel, and Cyprus. Within this clade, specimens from the eastern Aegean islands cluster with those from Turkey, a pattern consistent with the biogeography of several animal species, such as Abilepharus, Ophisops, Anatololacerta, Pelophylax (Bellati et al., 2015; Kynazi et al., 2008; Lymberakis et al., 2007; Skourtanioti et al., 2016), and is likely due to land connections among the majority of the eastern Aegean islands to Anatolia until the Upper Pleistocene (Perissoratis and Consiopoulos, 2003). Moreover, the specimens from Cyprus form a separate clade that is sister to M. kotschyi from southern Turkey and Samos/Arkoi islands in the eastern Aegean. The geonteconic evolution of Cyprus has not been clarified yet to a detailed enough level for biogeographic reconstructions [for details see (Poulakakis et al. 2013) and (Tamar et al., 2014)], as it is not clear if the island has ever been joined by a land bridge to the neighboring mainland (Anatolia, Syria). Thus, the colonization of Cyprus could have occurred either by a land bridge that connected Cyprus with the mainland (perhaps during the Messinian Salinity Crisis) as it has been suggested for the Eurasian blindsnake in Cyprus (Kornilios, 2017) or by transmarine dispersal. More specifically, species considered as old colonizers (Late Miocene, Early Pliocene) could have arrived to Cyprus either by geodispersal or transmarine dispersal, while the species considered as younger colonizers could have inhabited the island either through transmarine dispersal from the Middle East or by human translocations (Poulakakis et al., 2013). If we consider that the age of the split of Cyprus subclade at ~6 Mya is accurate (Fig. 3), then M. kotschyi seems to belong to the first group of colonizers that reached the island during the Messinian period. Our time estimates for the M. kotschyi lineage from Cyprus, considerably coincide with the time divergence estimated (~6 Mya) between Cyprus and Turkey lineages of Acanthodactylus schreiberi (Tamar et al., 2014) and close to that of Xerophylops socotranus (Kornilios, 2017).

Clade C hosts specimens from a very broad geographic region (from Crimea through Bulgaria and Turkey to an isolated population on Gavdos island) and can be divided into four distinct highly supported subclades, each one including specimens from a specific geographic region (Figs. 1 and 2). One of the most striking findings within this clade was the grouping of the lineage from Gavdos island (south-west of Crete) with some southern Anatolian populations and population from Kastelorizo island, which was also observed in the previous phylogeographic study of M. kotschyi (Kasapidis et al., 2005). The close phylogenetic relationship of the lineage from Gavdos island with the lineages from Turkey, Crimea and Bulgaria, and not with the geographically closer island of Crete remains a challenging issue. Gavdos is expected to have been an isolated island since the Tortonian at ~8 Mya (Drinia et al., 2010; Pomoni et al., 2013; Tsaparas, 2004) suggesting overwater dispersal to Gavdos as the most likely colonization (Kasapidis et al., 2005), though it is not obvious if the dispersal was human-aided or not as the limited sampling from the Eastern region may not contain the source population. However, the fact that specimens from Gavdos Island are morphologically differentiated from the remaining Anatolian samples (see Supplementary File 2; Distinct sub-species) supports the idea that it is possibly an old dispersal event.

Finally, the last two clades (D and E) that are the most differentiated clades of M. kotschyi, are well located at the south and southeastern part of the Aegean (Southern region). The differentiation of Crete from the southeastern Aegean islands is a well-defined biogeographic pattern observed in other taxa as well [e.g. land snails (Parmakelis et al., 2005) and frogs (Lymberakis et al., 2007)]. Although the partially resolved relationships of these two lineages in M. kotschyi do not allow precise estimates, our time estimates between 11 and 13 Mya (Fig. 3), are consistent with the observed pattern in other taxa and the palaeogeographic separation of this region from the mainland (see map in Fig. 3).

4.2. Species delimitation and taxonomy

Several subspecies and intermediate forms have been described, and the subspecific taxa are distributed across all of the five STACEY-deﬁned species. More specifically, the populations of M. kotschyi of the Western region have been assigned to eight morphological subspecies and two transitional forms (Valakos et al., 2008). Two of them (M. k. bibroni and M. k. saronicus) cover the majority of the geographical distribution within the western group (see Supplementary File 2; Fig. 5S). Six more subspecies (M. k. tineinis, M. k. kotschyi, M. k. beatleri, M. k. skopijensis, M. k. solerii and possibly M. k. danilewskii) and two transitional forms (M. k. saronicus × M. k. schultzewestrumi and M. k. saronicus × M. k. solerii) clustered within clade A but they show (see Supplementary File 2) very restricted geographical distributions (Valakos et al., 2008). In other words, the subspecific taxonomy of M. kotschyi is uncertain as several subspecies are polyphyletic.

Similarly considering the Eastern region, eight subspecies together with a transitional form have been described within clade B and three subspecies together with a transitional form have been described within clade C (Fig. 3 and Supplementary File 2; Figs. S6 and S7). Interestingly, the subspecies delimitation within clade B largely corresponds to the defined sub-clades [B2; M. k. danilewski, B3; M. k. fitzingeri, B4; M. k. bolkarensis, B5; M. k. orientalis and M. k. syriacus]. However, STACEY supported that all clade B samples form a single species (Fig. 3; taxon 2).

Samples from clade C originate from a broad geographic distribution, however, the majority of the specimens of this clade have been assigned to a single subspecies (M. k. danilewskii) that corresponds to the subclade C1. The remaining specimens of clade C are subdivided into three distinct subclades, two of which correspond to different subspecies [C3; M. k. kalypsae in Gavdos island, C4; M. k. ciliensis in Antalya]. However, we should note that the taxonomic position of M. kotschyi populations in southwestern Turkey is very doubtful since there are populations showing features of three subspecies (M. k. beatleri, M. k. danilewskii and M. k. ciliensis) and there is a wide inter-breeding zone between M. k. beatleri and M. k. ciliensis (Baran and Gruber, 1982) or there is exclusively M. k. ciliensis (Kumlutaş et al., 2004). Nonetheless, the species delimitation analysis showed, as in the case of clade C, that all of these populations belong to one single species (Fig. 3; taxon 3).

Last, considering the Southern region, most of the specimens that originate from the islands of southeastern Aegean (clade E) belong to M. k. oertzeni with the exception of those from Sofrano, Symi and maybe Rhodes (see Supplementary File 2). Two subspecies (see Supplementary
The genetic diversity within the M. kotschyi complex in mtDNA is high, and specifically the genetic distances among the major phylogenetic clades (Table 1), which correspond to the STACEY-defined species, are similar or even higher than the divergence found between some other lizard species (Bellati et al., 2015; Edwards et al., 2012; Sampaio et al., 2015). For example, in COI (Table 1; 17–18%) the genetic distance between Tenuidactylus species range between ∼7.0% and 18.6% (Nazarov and Poyarkov, 2013) and between species of the Gekkonidae family from 11.9% to 35.7% (Hawlitschek et al., 2013). The same issue was observed in cyt b (Table 1; 16–20%) and 16S (Table 1; ∼11–17%) which are equal or higher than the corresponding distances in Hemidactylus (Smid et al., 2013) and Stenodactylus (Metallinou et al., 2012). The high genetic divergence of M. kotschyi combined with its great morphological diversification (Ajić, 2014), and with the large number of recognized subspecies (Baran and Atatur, 1998; Franzen et al., 2008; Valakos et al., 2008), are in congruence with the hypothesis that M. kotschyi represents a species complex. Considering the deeply divergent clades (A–E; Fig. 2), their estimated ages (Fig. 3), distributions (Figs. 1 and 4), and the oldest available names, taxa 1 to 5 could be recognized as full species. Nevertheless, we stress the need of a complex approach with combination of genetics, morphology, ecology, and based on type or toptotypic material to fully resolve the taxonomy. If we consider taxa 1–5 as full species we propose the names below while our detailed rationale on names proposed is explained in detail in Supplementary File 2:

Clade A; Mediodactylus kotschyi (Steindachner, 1870), type locality: Syros Island, northern Cyclades. Distribution: mainland Balkans, most of Aegean islands, Italy (Fig. S5).

Clade B; Mediodactylus orientalis (Štěpánek, 1937) (new status), type locality: Jerusalem. Distribution: Levant, Cyprus, southern Anatolia, south-eastern Aegean islands (Samos, Ikaria and neighboring islets) (Fig. S6).

Clade C; Mediodactylus danilewskii (Strauch, 1887) (new status), type locality: Yalta, Crimea. Distribution: Black Sea region, south-western Anatolia, and Gavdos Island (south of Crete) (Fig. S7).

Clade D; Mediodactylus bartoni (Štěpánek, 1934) (new status), type locality: Nida Plateau, Psiloriti Mts., Crete. Distribution: Crete, including nearby islets (Fig. S8).

Clade E; Mediodactylus oertzeni (Boettger, 1888) (new status), type locality: Kasos Island, Dodecanese. Distribution: southern Dodecanese Islands (Fig. S9).
For synonymy see Supplementary File 2.

5. Conclusions

We provide new information about the phylogenetic relationships of populations of *M. kotschi* covering almost its entire distribution, indicating that it is one more case where phylogenetic analyses revealed hidden (unrecognized) species diversity (Ahmadzadeh et al., 2012; Garcia-Porta et al., 2017; Simó-Riudalbas et al., 2017). The levels of genetic divergence between the major phylogenetic clades of *M. kotschi* are extremely high, reaching or even overcoming the levels of interspecific genetic divergences between species within other genera of gekkonid lizards. Thus, *Mediodactylus kotschi* is actually a species complex, in which the applied species delimitation approach supported the five-species hypothesis. Phylogenetic information can now be added to the morphology-based subspecific taxonomy and the knowledge of distribution in order to perform detailed subspecific taxonomic revisions within the newly recognized species, and to assess conservation priorities since some of the defined subspecific taxa may be vulnerable or endangered.

Acknowledgements

We would like to thank Dr. Panayiotis Pafitis (National and Kapodistrian University of Athens, Greece), Ilia Strachinis (Aristotle University of Thessaloniki, Greece), and Boyan Petrov (National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria) for providing us with *Mediodactylus* samples.

Funding

This study was part of a broader research project entitled “Adding more Ecology and Genomics in understanding of the biological Diversity: the role of islands as natural laboratories” and was funded by NSFR 2007–2013 Program for the development, European Social Fund, financed by Greece and was funded by the Slovak Research and Development Agency under the contract no. APVV-15-0999/14, National Museum Prague, 00023272). Oleg V. Kukushkin was supported by the Slovak Research and Development Agency under the contract no. APVV-15-117013, the Ministry of Culture of the Czech Republic (DKRVO 2018/14, National Museum Prague, 00023272). Oleg V. Kukushkin was partially supported Zoological Institute of Russian Academy of Sciences AAAA-A17-117030310017-8.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ympev.2018.03.022.

References

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Country</th>
<th>Location</th>
<th>COI</th>
<th>cytb</th>
<th>16S</th>
<th>Origin</th>
<th>Subclade</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH145143</td>
<td>Greece</td>
<td>Sfendami (Northern Greece), Greece</td>
<td>A1</td>
<td>80.3.85.1791</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145137</td>
<td>Greece</td>
<td>Psiloritis mt. (Crete), Greece</td>
<td>A1</td>
<td>80.3.85.1182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145136</td>
<td>Greece</td>
<td>Thasopoula island (Northern Aegean), Greece</td>
<td>A1</td>
<td>80.3.85.1607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145150</td>
<td>Ukraine</td>
<td>Theodosiya Terr. Karadag Nature reserve, Crimea</td>
<td>A1</td>
<td>80.3.85.1798</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145127</td>
<td>Greece</td>
<td>Mikronisi islet (Crete), Greece</td>
<td>A1</td>
<td>80.3.85.1058</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH144924</td>
<td>Greece</td>
<td>Matka, FYROM</td>
<td>A1</td>
<td>80.3.85.1897</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145079</td>
<td>Greece</td>
<td>Sofiko Didimotoicho (Western Thrace), Greece</td>
<td>A1</td>
<td>80.3.85.1898</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145071</td>
<td>Greece</td>
<td>Thassos island (Northern Aegean), Greece</td>
<td>A1</td>
<td>80.3.85.1770</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145068</td>
<td>Greece</td>
<td>Mikro Despotiko island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1697</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145007</td>
<td>Greece</td>
<td>Mikros (Northern Aegean), Greece</td>
<td>A1</td>
<td>80.3.85.1704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH144918</td>
<td>Greece</td>
<td>Kastelorizo island (Southeastern Aegean), Greece</td>
<td>A1</td>
<td>80.3.85.1876</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145099</td>
<td>Greece</td>
<td>Ios island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1909</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145096</td>
<td>Greece</td>
<td>Mikrofios island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1458</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145108</td>
<td>Greece</td>
<td>Kastelorizo island (Southeastern Aegean), Greece</td>
<td>A1</td>
<td>80.3.85.1896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145067</td>
<td>Greece</td>
<td>Ios island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1641</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145064</td>
<td>Greece</td>
<td>Mikro Despotiko island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1671</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145059</td>
<td>Greece</td>
<td>Patmos island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1836</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145058</td>
<td>Greece</td>
<td>Theodosiya Terr. Karadag Nature reserve, Crimea</td>
<td>A1</td>
<td>80.3.85.1646</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145053</td>
<td>Greece</td>
<td>Mikro Despotiko island (Cyclades), Greece</td>
<td>A1</td>
<td>80.3.85.1896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145050</td>
<td>Greece</td>
<td>Theodosiya Terr. Karadag Nature reserve, Crimea</td>
<td>A1</td>
<td>80.3.85.1704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH145128</td>
<td>Greece</td>
<td>Mikros (Northern Aegean), Greece</td>
<td>A1</td>
<td>80.3.85.1607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary File 1

Multilocus phylogeny and coalescent species delimitation in Kotschy's gecko, *Mediodactylus kotschyi*: hidden diversity and cryptic species

Panayiota Kotsakiozi, Daniel Jablonski, Çetin Ilgaz, Shai Meiri, Yuval Itescu, Oleg Kukushkin, Václav Gvoždík, Giovanni Scillitani, Stephen Rousos, David Jandzik, Panagiotis Kasapidis, Petros Lymberakis, Nikos Poulakakis

1. Details on the Phylogenetic analyses

1.1. Select of the best-fit partitioning scheme and DNA substitution models.

This analysis implemented in PartitionFinder 1.1.1 (Lanfear et al. 2012). The analysis was run with greedy search algorithm, considering that the 16 blocks (15 blocks for the 1st, 2nd, and 3rd codon positions for each one of the 5 protein-coding genes and one block for the 16S rRNA) have linked branch lengths, ignoring the models that include both gamma distribution and invariable sites (Yang 2006). We ran PartitionFinder (PF) twice with the models of molecular evolution restricted to those that are available in either MrBayes (used for the Bayesian Inference phylogenetic analysis) or RAxML (used for the Maximum likelihood phylogenetic analysis). In the species delimitation analyses (as implemented in STACEY and BEAST2) and in the estimation of divergence times (BEAST) the data were partitioned by loci due to requirement of ploidy provision.

1.2 Bayesian Inference as performed in MrBayes
Bayesian Inference (BI) was performed in MrBayes v.3.2.6 (Ronquist et al. 2012) and the results were analyzed in Tracer v.1.6 (Drummond & Rambaut 2007) to assess convergence and effective sample sizes (ESS) for all parameters. We checked i) the average standard deviation of split frequencies between chains (based on the MrBayes manual: “keep adding generations until the value falls below 0.01 or 0.05 (may be adequate) if you are interested mainly in the well-supported parts of the tree”), ii) the potential scale reduction factor (PSRF) of all the estimated parameters approached values of ~1, iii) the plot of the generation versus the log probability of the data (the log likelihood values), and iv) the minimum value of minimum Estimated Sample Sizes (ESS- an ESS value below 100 may indicate that the parameter is undersampled). Maximum likelihood bootstrap values (BS) and Bayesian posterior probability (PP) values were joined and mapped to the Bayesian tree (i.e., the 50% majority-rule consensus tree calculated from the posterior distribution of trees).
2. Supplementary Tables

Table S2. List of primers, target fragments’ length and PCR conditions used for the amplification of the mtDNA and nuDNA fragments.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer Name</th>
<th>Primer Sequence</th>
<th>Primer combinations (target length)</th>
<th>Reference</th>
<th>PCR conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>COI</td>
<td>HCO2198</td>
<td>TAAACTTCAGGGTGACAAAAATCA</td>
<td>HCO2198/LCO1490 (~700bp), HCO2198/C1J1709 (~550bp), LCOI5982/ HCOI6570 (~550bp)</td>
<td>Folmer et al (1994)</td>
<td>39 cycles (3.5-4.5mM MgCl2) Denaturation: 94°C/60s Annealing: 42-47°C/45s Extension: 72°C/ 30s</td>
</tr>
<tr>
<td></td>
<td>LCO1490</td>
<td>GTCAACAAATCATAAAGATATTGG</td>
<td></td>
<td>Folmer et al (1994)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCOI5982</td>
<td>GGTATAACCGGAAACAGCCCTN</td>
<td></td>
<td>Kasapidis et al. (2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCOI6570</td>
<td>TGCTGGGTCGAAGAA</td>
<td></td>
<td>Kasapidis et al. (2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1J1709</td>
<td>AATTGGWGGWTTYGGAAAYTG</td>
<td></td>
<td>Simon et al. (2006)</td>
<td></td>
</tr>
<tr>
<td>cyt</td>
<td>L14841</td>
<td>AAACAAGCTTCCATCCAAACATCTTCAGCATGA</td>
<td>-300bp</td>
<td>Kocher et al. (1989)</td>
<td>39 cycles (3mM MgCl2) Denaturation: 94°C/60s Annealing: 44-46°C/60s Extension: 72°C/ 60s</td>
</tr>
<tr>
<td></td>
<td>H15149</td>
<td>AAACCTGCAGGCACCCTCAAGATCTTTTGCTCATA</td>
<td></td>
<td>Kocher et al. (1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16Sbr-H</td>
<td>CCGGTCTGAACCTCAGATCAGT</td>
<td></td>
<td>Palumbi (1996)</td>
<td></td>
</tr>
<tr>
<td>rDNA</td>
<td>AcanthF</td>
<td>CTGGAACATTYTTAGCCATRC</td>
<td>AcanthF/ AcanthR (~330bp)</td>
<td>Psonis et al. (2016)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AcanthR</td>
<td>CAGGCTCAAAACAACCCCAACAG</td>
<td></td>
<td>Psonis et al. (2016)</td>
<td></td>
</tr>
<tr>
<td>MC1R</td>
<td>MC1R_F</td>
<td>GGCNCCCATYCTGCAAGAAACCGGAACC</td>
<td>~600bp</td>
<td>Pinho et al. (2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MC1R_R</td>
<td>CTCCGRAAGGRTAAATGATGTTGGGTCCAC</td>
<td></td>
<td>Pinho et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>cmos</td>
<td>G73</td>
<td>GAAGAGCAAGGACAGGTAC</td>
<td>~400bp</td>
<td>Saint et al. (1998)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G74</td>
<td>CAACCTCATCCACGTTACC</td>
<td></td>
<td>Saint et al. (1998)</td>
<td></td>
</tr>
<tr>
<td>RAG2</td>
<td>RAG2-PY1-F</td>
<td>CCCTGAGTTTGATGCTGTACTT</td>
<td>~400bp</td>
<td>Gamble et al. (2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAG2-PY1-R</td>
<td>AACTGCCTRTTGCTCCCCCTGGAT</td>
<td></td>
<td>Gamble et al. (2008)</td>
<td></td>
</tr>
</tbody>
</table>
Table S3. Best partition scheme and model of evolution as indicated by the PartitionFinder for each dataset (mtDNA, nuDNA, concatenated) for each phylogenetic analysis.

<table>
<thead>
<tr>
<th>Dataset (markers included)</th>
<th>Bayesian Inference (MrBayes)</th>
<th>Maximum Likelihood (RAxML)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Partition scheme (model selected)</td>
<td>Partition scheme (model selected)</td>
</tr>
<tr>
<td>mtDNA (16S rRNA, cyt, COI)</td>
<td>1. cytb_pos1 (K80+G)</td>
<td>1. COI_pos1, cytb_pos1 (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>2. COI_pos1, cytb_pos2 (SYM+I+G)</td>
<td>2. COI_pos2, cytb_pos2 (GTR+G)</td>
</tr>
<tr>
<td></td>
<td>3. cytb_pos3 (GTR+G)</td>
<td>3. cytb_pos3 (GTR+G)</td>
</tr>
<tr>
<td></td>
<td>4. COI_pos2 (F81)</td>
<td>5. COI_pos3 (GTR+G)</td>
</tr>
<tr>
<td></td>
<td>5. COI_pos3 (GTR+G)</td>
<td>6. 16S rRNA (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>6. 16S rRNA (GTR+I+G)</td>
<td></td>
</tr>
<tr>
<td>nDNA (MC1R, RAG-2, cmos)</td>
<td>1. cmos_pos1, cmos_pos2, RAG-2_pos1, RAG-2_pos2 (HKY+I)</td>
<td>1. cmos_pos1, RAG-2_pos1, RAG-2_pos2 (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>2. coms_pos3, mc1r_pos1, RAG-2_pos3 (K80+G)</td>
<td>2. coms_pos2, coms_pos3, mc1r_pos1, mc1r_pos2, RAG-2_pos3 (GTR+G)</td>
</tr>
<tr>
<td></td>
<td>3. mc1r_pos2 (HKY)</td>
<td>3. mc1r_pos3 (GTR+G)</td>
</tr>
<tr>
<td></td>
<td>4. mc1r_pos3 (HKY+G)</td>
<td></td>
</tr>
<tr>
<td>Concatenated combined (16S rRNA, cyt, COI, MC1R, RAG-2, cmos)</td>
<td>1. 16S, cyt_pos1 (GTR+I+G)</td>
<td>1. 16S rRNA (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>2. cmos_pos3, cyt_pos2, mc1r_pos1, RAG-2_pos3 (K80+G)</td>
<td>2. cmos_pos3, COI_pos2, mc1r_pos1, RAG-2_pos3, RAG-2_pos1, RAG-2_pos3, cmos_pos1, cmos_pos2 (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>3. coi_pos3, cyt_pos3 (GTR+G)</td>
<td>3. cyt_pos3 (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>4. coi_pos1 (SYM+G)</td>
<td>4. coi_pos3 (GTR+G)</td>
</tr>
<tr>
<td></td>
<td>5. coi_pos2, mc1r_pos2 (HKY+I)</td>
<td>5. coi_pos1, cytb_pos2, cytb_pos1 (GTR+I+G)</td>
</tr>
<tr>
<td></td>
<td>6. cmos_pos1, cmos_pos2, RAG-2_pos1, RAG-2_pos2 (HKY+I)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. mc1r_pos3 (HKY+G)</td>
<td>6. mc1r_pos3 (GTR+G)</td>
</tr>
</tbody>
</table>

continued
Analysis

<table>
<thead>
<tr>
<th>Dataset (markers included)</th>
<th>Bayesian Inference (BEAST)</th>
<th>Maximum Likelihood (RAxML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenated combined (16S rRNA, cyt b, COI, MC1R, RAG-2, cmos) for the BEAST analysis</td>
<td>1. 16S (GTR+I+G)</td>
<td>Partition scheme (model selected)</td>
</tr>
<tr>
<td></td>
<td>2. cmos_pos3, COI_pos2, mc1r_pos2 (TrN+G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. coi_pos3 (TrN+G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. coi_pos1 (TrNef+I+G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. cytb_pos3 (TrN+I+G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. cytb_pos1, rag_pos1, cytb_pos2 (K80+I+I)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. cmos_pos1, cmos_pos2, RAG-2_pos2 (K80+I)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. mc1r_pos3 (TrN+G)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. cytb_pos1, cytb_pos2, rag2_pos1 (K80+I+G)</td>
<td></td>
</tr>
</tbody>
</table>
3. Supplementary Figures

Figure S1. Neighbor Joining (NJ) trees that show the phylogenetic relationships of the ingroup (*Mediodactylus kotschyi*) with different outgroup taxa (A. *Hemidactylus*, B. *Cyrtopodion*, C. *Stenodactylus*, and D. all outgroup taxa including *Tarentola*). The NJ trees were constructed based on the mtDNA dataset consisting of three mtDNA markers (COI, cytb and 16S rRNA) and 1,667 bp in total. The analyses were run in MEGA v.6.06 using 1,000 bootstraps and the *p*-distance method. Colors and symbols on the clades are consistent with those in Figure 1 and Figure 2.
Figure S2. Maximum Likelihood (ML) tree reconstructed from the mtDNA dataset. Bootstrap (BS) supports resulted from the ML analysis, are indicated on the branches of the tree. For reasons of presentation BS<70 and statistical support of the external clades are not presented. Individual codes and clades’ colors are consistent with those in Table S1 and Fig. 2 respectively.
Figure S3. Bayesian Inference (BI-left) and Maximum Likelihood (ML-right) trees reconstructed from the nuDNA dataset. Posterior probabilities (PP) and bootstrap (BS) supports resulted from the Bayesian Inference and Maximum Likelihood analysis respectively, are indicated on the branches of the tree. For reasons of presentation BS<60 and PP<0.6, as well as statistical support of the external clades are not presented. Individual codes and clades’ colors are consistent with those in Table S1 and Fig. 2 respectively.
Figure S4. Bayesian Inference (A) and Maximum Likelihood (B) trees reconstructed from the concatenated mtDNA and nuDNA dataset. Posterior probabilities (PP) and bootstrap (BS) supports resulted from the Bayesian Inference and Maximum Likelihood analysis respectively, are indicated on the branches of the tree. For reasons of presentation BS<60 and PP<0.60, as well as statistical support of the external clades are not presented. Individual codes and clades’ colors are consistent with those in Table S1 and Figs. 2, 3.
References

Supplementary File 2

Multilocus phylogeny and coalescent species delimitation in Kotschy's gecko, *Mediodactylus kotschyi*: hidden diversity and cryptic species

Panayiota Kotsakiozi, Daniel Jablonski, Çetin Ilgaz, Shai Meiri, Yuval Itescu, Oleg Kukushkin, Václav Gvoždík, Giovanni Scillitani, Stephen Rousos, David Jandzik, Panagiotis Kasapidis, Petros Lymberakis, Nikos Poulakakis

1. Distinct subspecies

SYNONYMY OF NOMINAL TAXA AND CLADE ASSIGNMENTS

The below-listed nomina may serve as available names (if not nomina nuda). The synonymy is at the species level and in chronological order. When more names applicable for a (sub)clade were published on the same date in the same work, we act as the First Reviser and select one name in accordance to the Article 24.2 of ICZN (1999), e.g. the case of *Mediodactylus orientalis* (Štěpánek, 1937). In bold, we mark nomina, which are the oldest available names or selected names (First Reviser) for particular (sub)clades based on type localities, when confirmed genetically in the present study. We propose subspecies names for subclades, where we investigated topotypic material.

However, at the present stage, the intraspecific taxonomy of the five newly recognized species is provisional as older available names may be applicable for some subclades, when genetically tested (e.g. *Gymnodactylus kotschyi rumelicus* Müller, 1939 might be an available name having priority for the subclade A4). A complex approach with combination of genetics, morphology, ecology, and based on type or topotypic material must be applied to fully solve the subspecies-level taxonomy.

? – denotes cases, where we did not have material from the region of type locality of a given taxon (topotype), and (sub)clade/taxonomic assignments are tentative, based on original descriptions and our material from nearest regions.

Reference

MEDIODACTYLUS KOTSCHYI (Steindachner, 1870) – Clade A

Mediodactylus kotschyi kotschyi (Steindachner, 1870) – Subclade A1

Gymnodactylus kotschyi Steindachner, 1870

Type locality: Syros Island, N Cyclades, Greece. Restricted by Mertens & Müller (1928).

Mediodactylus kotschyi concolor (Bedriaga, 1881 “1882”) – Subclade A2

Gymnodactylus kotschyi var. concolor Bedriaga, 1881 “1882”

Type locality: Milos Island, S Cyclades, Greece.

Gymnodactylus kotschyi var. maculatus Bedriaga, 1881 “1882” – Subclade A2

Type locality: Milos Island, S Cyclades, Greece. Restricted by Mertens & Wermuth (1960).
Gymnodactylus kotschyi subsp. saronica Werner, 1937 – Subclade A1?
Type locality: Salamis Island, Saronic Islands, Greece. Restricted by Wettstein (1953).

Gymnodactylus kotschyi solerii Wettstein, 1937 – Subclade A2?
Type locality: Syrina Island, SE of Astropalia (= Syrna, SE of Astypalaia), Dodecanese, Greece.

Gymnodactylus kotschyi rumelicus Müller, 1939 “1940” – Subclade A4?
Type locality: Plovdiv, Bulgaria.

Gymnodactylus kotschyi christianae (or christianus) Buchholz, 1955 – Subclade A2?
Type locality: Christiana Island, S Cyclades, Greece. Nomen nudum fide Kluge (1993).

Mediodactylus kotschyi skopjensis (Karaman, 1965) – Subclade A4
Gymnodactylus kotschyi skopjensis Karaman, 1965
Type locality: Skopje, Macedonia.

Cyrtodactylus kotschyi bibroni Beutler & Gruber, 1977 – Subclade A1? or A3?
Type locality: Monemvassia, SE Peloponnese, Greece.

Cyrtodactylus kotschyi buchholzi Beutler & Gruber, 1977 – Subclade A2?
Type locality: Siphnos, Cyclades, Greece.

Cyrtodactylus kotschyi fuchsi Beutler & Gruber, 1977 – Subclade A4?
Type locality: Strongylo Islet, between Gioura and Pelagonisi (= Kyra Panagia), N Sporades, Greece.

Cyrtodactylus kotschyi gruberi Beutler & Gruber, 1977 – Subclade A4?

Cyrtodactylus kotschyi schultzewestrumi Beutler & Gruber, 1977 – Subclade A4?
Type locality: Valaxa Island, W of Skyros, S Sporades, Greece.

Cyrtodactylus kotschyi tinensis Beutler & Frör, 1980 – Subclade A1?
Type locality: Tinos Island, N Cyclades, Greece.

Type locality: Çıplak Ada Island, North Aegean Islands, Turkey

? Cyrtodactylus kotschyi karabagi Baran & Gruber, 1981 – Subclade A4? or Clade C?
Type locality: Fener Adasi Island, Marmara Sea, Turkey.
Figure S6. Eastern thin-toed gecko (*Mediodactylus orientalis*)

MEDIODACTYLUS ORIENTALIS (Štěpánek, 1937) – Clade B

Gonyodactylus cyprius Fitzinger, 1843 – Subclade B3

Type locality: Cyprus. Nomen nudum fide Štěpánek (1937).

Mediodactylus orientalis orientalis (Štěpánek, 1937) – Subclade B5

Type locality: Jerusalem.

Gymnodactylus kotschyi syriacus Štěpánek, 1937 – Subclade B5? or B1?

Type locality: Syria.

Type locality: Eğirdir, W central Anatolia, Turkey.

Mediodactylus orientalis fitzingeri (Štěpánek, 1937) new combination – Subclade B3

Type locality: Cyprus.

Mediodactylus orientalis lycaonicus (Mertens, 1952) new combination – Subclade B2?

Type locality: Konya, Lycaonia (central Anatolia), Turkey.

Mediodactylus orientalis ciliciensis (Baran & Gruber, 1982) new combination – Subclade B1?

Type locality: Mediterranean Sea.

Cyrtodactylus kotschyi ciliciensis Baran & Gruber, 1982
Type locality: 10 km NE of Silifke, Turkey.

Mediodactylus orientalis bolkarensis (Rösler, 1994) new combination – Subclade B4?
Cyrtopodion kotschyi bolkarensis Rösler, 1994
Type locality: Ereğli, N Bolkar Mt., Turkey.
Figure S7. Danilewski’s gecko (*Mediodactylus danilewskii*)

MEDIODACTYLUS DANILEWSKII (Strauch, 1887) – Clade C

Mediodactylus danilewskii danilewskii (Strauch, 1887) – Subclade C1

Gymnodactylus danilewskii Strauch, 1887

Type locality: Yalta, Crimea.

? *Gymnodactylus colchicus* Nikolsky, 1902 – Clade C?

Type locality: Singot and Ardanuç, Artvin, Turkey.

Gymnodactylus kotschyi burleschi Štěpánek, 1937 – Subclade C1

Type locality: Aja Galina, near Sozopol, Bulgaria.

Mediodactylus danilewskii kalypsa (Štěpánek, 1939) new combination – Subclade C3

Gymnodactylus kotschyi kalypsa Štěpánek, 1939

Type locality: Gaudos Island (= Gavdos), Greece.

? *Cyrtodactylus kotschyi ponticus* Baran & Gruber, 1982 – Clade C?

Type locality: Tokat, Turkey.
Figure S8. Cretan gecko (*Mediodactylus bartoni*)

Mediodactylus bartoni (Štěpánek, 1934) – Clade D
Gymnodactylus bartoni Štěpánek, 1934 – Clade D
Type locality: Nida Plateau, Psiloriti Mts., Crete, Greece.

Gymnodactylus kotschyi wettsteini Štěpánek, 1937 – Clade D?
Type locality: Mikronisi Island, near Agios Nikolaos, NE Crete, Greece.

Gymnodactylus kotschyi rarus Wettstein, 1952 – Clade D
Type locality: Gaidaros Island (= Chrysi Island), near Ierapetra, SE Crete, Greece.

Gymnodactylus kotschyi stubbei Wettstein, 1952 – Clade D?
Type locality: Kufoniși Island, SE Crete, Greece.
Figure S9. Dodecanese gecko (*Mediodactylus oertzeni*)

MEDIODACTYLUS OERTZENI (Boettger, 1888) – Clade E

Mediodactylus oertzeni oertzeni (Boettger, 1888) – Subclade E1

Gymnодactylus oertzeni Boettger, 1888

Type locality: Kasos Island, Dodecanese, Greece. Restricted by Mertens & Müller (1940).

Mediodactylus oertzeni stepaneki (Wettstein, 1937) new combination – Subclade E2

Gymnодactylus kotschyi stepaneki Wettstein, 1937

Type locality: Megali Zafrana Island (= Megalo Sofrano), Dodecanese, Greece.

Gymnodactylus kotschyi unicolor Wettstein, 1937 – Clade E?

Type locality: Karavi Nisia Islands, northern island (= Karavonis = Vrachonisídes Karávia), 7 km S of Sofrano Island, Dodecanese, Greece.

Cyrtodactylus kotschyi adelphiensis Beutler & Gruber, 1977 – Clade E?

Type locality: Due Adelphaes Islands, western island (= Mikros Adelfos), N of Syrna, Dodecanese, Greece.

? Cyrtodactylus kotschyi bileki Tiedemann & Häupl, 1980 – Clade E?

Type locality: Nisos Makri Island, NW Rhodos, Dodecanese, Greece.