OSTEOCEPHALUS CABRERAI (Spiny-backed Treefrog) and LEPTODACTYLUS MYSTACEUS (Amazonian White-lipped Frog). INTERSPECIFIC AMPLEXUS. The hylid Osteocephalus cabreri occurs mainly on edges of streams, and is distributed in Amazonian Colombia and Peru, the Guiana Shield, the Orinoco Delta in Venezuela, and Brazilian central Amazon (Jungfer et al. 2010. Zootaxa 2407:28–50). Despite this wide distribution, there is little information on the reproductive biology and natural history of this species (Lima et al. 2011. Phyllomedusa 10:137–142). The leptodactylid Leptodactylus mystaceus is an abundant species occurring from Venezuela to southern Brazil (Affonso et al. 2011. Check List 7:198–199) and it was reported previously in a case of interspecific amplexus with the hylid Boana multifasciatus (Avelar et al. 2018. Herpetol. Rev. 49:299–300). At ca. 2200 h on 24 April 2012 on Highway AM-240, Community São Francisco, Presidente Figueiredo, Amazonas, Brazil (2.01277°S, 59.82115°W; WGS 84), we observed interspecific amplexus between a male O. cabreri and female L. mystaceus. This behavior was observed on the edge of a small stream within an upland forest. The two specimens were in axillary amplexus on the ground and maintained their position during ca. 15 min. of observation. At the same place, there were other specimens of O. cabreri on small bushes vocalizing, but none of them were observed in amplexus. To our knowledge, this is the first report of interspecific amplexus between O. cabreri and L. mystaceus.

We thank the Instituto Nacional de Pesquisas da Amazônia for research support. AMSN thanks particularly the support for the Capes-INPA research grant (Process: 88887.31.2051/2018-00). DM MMM thanks particularly the support for the CNPq research grant (Process: 141878/2018-5). RS acknowledges the FAPEAM for the Ph.D. scholarship (002/2016 – POSGRAD 2017).
has never been observed in the closely related but terrestrial genus *Rana*, where current members of mainly aquatic or semi-aquatic frogs (*Pelophylax*) were historically classified. The most common defense behavior of *Rana* is immobility posture known as “eye-protection” (see e.g., Haberl and Wilkinson 1997. Brit. Herpetol. Soc. Bull. 61:16–20; Jablonski et al. 2019. Herpetol. Bull. 147:19–20), which is not reported for the genus *Pelophylax*. This difference may be explained by differences in predation pressure experienced by the two groups.

The photography from Greece were conducted under the permission of the Greek Ministry of Environment and Energy (7646538-8; protocol number 167886/538). This study was supported by the Slovak Research and Development Agency under the contract no. APVV-15-0147.

DANIEL JABLONSKI, Department of Zoology, Comenius University in Bratislava, Ilkovicova 6, Mlynska Dolina, 842 15 Bratislava, Slovakia (e-mail: daniel.jablonski@balcanica.cz); ELIAS TZORAS, Patra, 26442 Achaia, Greece (e-mail: eliastzoras@outlook.com).


Albinistic individuals lack all coloration; the individuals described in this note lacked all melanin including in the skin, mucosa, and eyes, and are therefore classified as true albinos (Bechtel 1995. Reptile and Amphibian Variants: Colors, Patterns, and Scales. Krieger Publishing Company, Malabar, Florida. 206 pp.). Here, we report the second confirmed case of albinism in the genus *Pseudacris*.

On 9 February 2018, multiple egg masses were collected from Alapaha River Wildlife Management Area, Irwin County, Georgia, USA (31.51819°N, 83.34823°W; WGS 84) and held under refrigeration ca. 4.5°C for 11 d before being transferred to aquaria at room temperature. Hatching began on 12 February 2018 and was completed by 25 February 2018. Tadpoles with abnormal coloration were evident 9 d later. Four individuals of albinism were recorded in this study. The albinistic metamorph is significant because it is generally a common defense behavior of the two groups.

The albinistic tadpoles were transferred to a larger container with *P. hemitomon* and a bubbler on 13 May 2018. The container was exposed to indirect sunlight and the tadpoles appeared to be growing and developing limb buds. One tadpole died following a water change on 1 June 2018 and was submitted to the Georgia Museum of Natural History (GMNH 51918). This individual had been growing and undergoing development, and other than pigmentation, was normally developed (Fig. 1). We expect it would have completed metamorphosis without the stress of a water change. The remaining albino tadpole completed metamorphosis on 27 June 2018 (Fig. 2). The metamorphic individual lacked any pigmentation including within and around the eye. The animal exhibited normal behavior with the exception of an apparent visual impairment. The metamorph hopped and burrowed normally and responded to shadows, but it appeared to only feed on fruit flies using tactile cues. The individual died on 11 September 2018 and was preserved in 10% formalin and stored in 70% ethanol (GMNH 51919).

While there are many causes of albinism, spontaneous mutations in the TYR gene, which is responsible for coding the tyrosinase enzyme, have resulted in amphibian albinism (Miura et al. 2017. Genes Genet. Syst. 92:189–196). Tyrosinase catalyzes the production of tyrosine, which is necessary for the production of melanin and is converted to the thyroid hormones thyroxine (*T4*) and triiodothyronine (*T3*). *T4* and *T3* regulate cell growth and differentiation and are essential to successful metamorphosis. The developmentally normal albinistic metamorph is significant because it is generally assumed that selective pressures (Pash et al. 2007. Herpetol. Bul. 100:8; Marinuzzi et al. 2016. Cuad. Herpetol. 30:69–73) and disruption of these metabolic pathways limit the occurrence of albinism in nature. However, normal metamorphosis is possible and the presence of genetically albino individuals within populations may signal high genetic diversity, and is therefore, worthy of further inquiry.

Work approved under authority of University of Georgia IACUC AUP # A2018 02-019-Y1-A0 and Georgia Department of Natural Resources Scientific Collecting Permit #1000602439. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 049347-06. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.